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In this work we introduce a manifold learning-based method for uncertainty quantification (UQ) in systems describing
complex spatiotemporal processes. Our first objective is to identify the embedding of a set of high-dimensional data
representing quantities of interest of the computational or analytical model. For this purpose, we employ Grassmannian
diffusion maps, a two-step nonlinear dimension reduction technique which allows us to reduce the dimensionality of
the data and identify meaningful geometric descriptions in a parsimonious and inexpensive manner. Polynomial chaos
expansion is then used to construct a mapping between the stochastic input parameters and the diffusion coordinates of
the reduced space. An adaptive clustering technique is proposed to identify an optimal number of clusters of points in
the latent space. The similarity of points allows us to construct a number of geometric harmonic emulators which are
finally utilized as a set of inexpensive pretrained models to perform an inverse map of realizations of latent features to
the ambient space and thus perform accurate out-of-sample predictions. Thus, the proposed method acts as an encoder-
decoder system which is able to automatically handle very high-dimensional data while simultaneously operating
successfully in the small-data regime. The method is demonstrated on two benchmark problems and on a system of
advection-diffusion-reaction equations which model a first-order chemical reaction between two species. In all test
cases, the proposed method is able to achieve highly accurate approximations which ultimately lead to the significant
acceleration of UQ tasks.

KEY WORDS: surrogate modeling, manifold learning, low-dimensional embedding, large-scale compu-
tational systems, Grassmann manifold, uncertainty quantification, advection-diffusion-reaction

1. INTRODUCTION

Robust engineering design and optimal decision making require the accurate prediction of the performance of (often
complex) stochastic systems or systems with significant uncertainty. Uncertainty quantification (UQ), an important
field of computational science and engineering, provides a means of propagating uncertainties through the system to
understand their influence on responses of interest. Despite the recent progress in hardware and processing power, UQ
is often prohibitively expensive for real-world systems of interest, as it usually requires a large number of evaluations
of complex mathematical models. To alleviate this issue, surrogate models are employed to establish an efficient
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approximate mapping between model inputs and outputs. Such models enable the propagation of mixed aleatoric and
epistemic uncertainties across scales [1]. The construction of accurate surrogates, however, typically requires smooth
input-output functional relations, which may not be realistic in real-world applications, that predict low-dimensional
quantities of interest that may not reflect the complexity of the solution.

Nonintrusive polynomial chaos expansions (PCE) are an established and versatile surrogate modeling technique
that express model input-output relations in terms of an expansion of polynomials that are orthonormal with respect to
the probability density function (PDF) characterizing the input random variables [1–5]. One of the main advantages
of PCE methods is that UQ tasks such as moment estimation and sensitivity analysis can be easily performed by
post-processing the terms of the PCE [6–8]. In the case of a high-dimensional input parameter space, sparse PCE
methods have been successfully proposed in the literature, which take advantage of the so-called “sparsity of effects”
principle to construct surrogates with only a small number of forward model evaluations [9–11]. In such cases,
however, a suitable model selection criterion must be employed for tuning the hyperparameters that are used to obtain
the optimal model. Several techniques exist to adaptively identify the optimal polynomial basis and associated sparse
solution, which aim to keep the size of the basis small by controlling which functions are added to the basis [10,12–
14]. Despite its advantages, in cases where very high-dimensional outputs are considered, a PCE surrogate can be
both computationally intractable to construct and incapable of accurately performing out-of-sample predictions.

One way to overcome the challenges associated with high-dimensional models is to apply dimension reduction
techniques. Linear and nonlinear dimension reduction methods can be used to map data onto lower-dimensional man-
ifolds (embeddings) by identifying and extracting meaningful features. Such techniques are important to overcome
the so-called “curse of dimensionality,” to avoid overfitting, to denoise data, and to enable regression analysis tasks.
Although dimension reduction methods were originally developed for computer vision and image recognition ap-
plications, they have been increasingly used in recent years to facilitate the construction of accurate surrogates for
high-dimensional physics-based models.

Several methods use linear spectral decomposition methods such as principal component analysis (PCA), which
involve the eigendecomposition of the data covariance function to capture the dominant modes of the output repre-
sented in the form of a field (matrix) [15,16]. Similarly, proper orthogonal decomposition (POD) or the Karhunen-
Loève expansion (KLE) has been widely used for reduced-order model construction [17–20]. Active subspaces,
a dimension reduction technique which discovers linear manifolds of the data, has been proposed as an in-built
technique for the construction of Gaussian process (GP) surrogates [21–24]. Furthermore, multiple gradient-based
techniques can be found in the literature for identifying subspaces in situations involving multivariate outputs and
high-dimensional input parameter spaces [18,19,25–27].

Nonlinear dimension reduction, also known as manifold learning, is used to deal with the limitations of the linear
methods, namely the assumption that high-dimensional data can be embedded in linear spaces. Instead, nonlinear
dimension reduction methods consider that the data reside on some low-dimensional, nonlinear manifold such as a
Grassmannian or a diffusion manifold. Recent work of the co-authors has considered the construction of surrogate
models on the Grassmannian [28–30]. Another class of methods leverages diffusion maps (DMaps) [31], to either
draw samples from a distribution on the diffusion manifold [32–34] or construct surrogate models on the diffusion
manifold [35,36]. Additionally, in a recent work kernel PCA is coupled with kriging and PCE to extend surrogates to
high-dimensional models [37].

An alternative approach to identify latent representations of data is to use deep neural networks (DNNs) such as
multilayer perceptrons (MLPs) [38,39]. Recently, multiple techniques based on autoencoders (unsupervised learning)
[40] and convolutional neural networks (supervised learning) [41], have been proposed for constructing surrogate
models when input and output fields are high-dimensional [42–49]. Such methods have lately received increasing
attention primarily due to advancements in computer hardware and the availability of powerful resources such as
graphical and tensor processing units (GPUs, TPUs). Although DNNs are capable of capturing complex nonlinear
relations between high-dimensional inputs and outputs and provide both encoder and decoder paths for dimension re-
duction purposes, they are still considered more suitable for problems in the so-called “big-data” regime. Furthermore,
such models are very costly to train, and rely on the heuristic choice of the network architecture and the calibration
of multiple hyperparameters. Finally, they do not inherently provide a link between the input stochastic parameters
and model output, which is essential for the implementation of UQ tasks.
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In this work we introduce a novel framework, which combines low-dimensional manifold learning principles with
surrogate model construction for the interpolation of dimension-reduced solutions that can be employed to generate
out-of-sample predictions based on a limited number of model evaluations. We are interested in complex models that
generate high-dimensional outputs (e.g., high-fidelity finite element models) that are computationally expensive to
run. As a result, we can only afford a small number of model evaluations. Dimensionality reduction is achieved using
the Grassmannian diffusion maps (GDMaps) technique introduced in [50], which identifies a latent representation of
the dataset on a lower-dimensional manifold via a two-step procedure. In the first step, high-dimensional data (model
solutions) are projected onto an orthonormal matrix manifold called the Grassmann manifold [51,52] that defines
the subspace structure of the data. In the second step the diffusion maps (DMaps) method is employed to unfold
the underlying nonlinear geometry of the data on the Grassmann manifold onto a diffusion manifold. Next, a PCE
surrogate model is constructed to establish a mapping between input parameters and coordinates on the diffusion
manifold. To reconstruct the full solution from PCE prediction solutions on the diffusion, a set of special functions
called geometric harmonics (GH) [53] is used to locally define suitable mappings from the data on the diffusion
manifold onto the tangent space of the Grassmann manifold. The local GH models allow us to perform out-of-sample
predictions and return generated points on the diffusion manifold to the physically interpretable space.

The advantages of the proposed method lie in its ability to automatically handle high-dimensional datasets gener-
ated by complex models and extract important low-dimensional descriptors which sufficiently represent the complex
physics of the system. Furthermore, our approach enables the minimization of necessary model simulations as it
works well in the small-data regime, greatly reduces training time, and provides a direct way to decode the com-
pressed data to the original space and link input parameters with model outputs. We show that the proposed method
is robust and allows the acceleration of UQ tasks in cases of nonlinear complex applications.

The rest of this paper is organized as follows. The theoretical background for the dimension reduction methods,
geometric harmonics, and PCE surrogates employed in this work, is briefly presented in Section 2. The important
ingredients of the proposed framework are discussed in detail in Section 3. This is divided into two sections where we
describe an “encoder path” that follows the Grassmannian diffusion maps and PCE surrogates on the manifold, and a
“decoder path” that describes the construction of local geometric harmonics to generate full solutions from reduced
order predictions. The performance of the proposed approach is assessed by three illustrative applications given in
Section 5. The first example involves a model problem from electromagnetic field theory. In the second example, the
method is applied to predict time evolution on the classic Lotka-Volterra (predator-prey) dynamical system. The third
application deals with a system of advection-diffusion-reaction equations modeling a first-order chemical reaction
between two species. Finally, Section 6 presents the conclusions.

The distinct components of the proposed method (GDMaps and PCE surrogate modeling) have been individually
implemented in UQpy (Uncertainty Quantification with python) a general-purpose open-source software for mod-
eling uncertainty in physical and mathematical systems [54]. Codes for implementing the proposed framework and
reproducing the results are available at https://github.com/katiana22/GDM-PCE.

2. PRELIMINARIES

2.1 Grassmannian Diffusion Maps (GDMaps)

Diffusion maps (DMaps) [31] is a manifold learning technique that is based on the construction of a Markov tran-
sition probability matrix corresponding to a random walk on a graph connecting the data. The vertices of the graph
are the data points and the edges represent connections between the data points that are weighted by transition prob-
abilities representing the local similarities between pairs of points. The graph structure can be parameterized by the
so-called diffusion coordinates, representing the low-dimensional manifold (embedding) of the data. To identify this
parameterization, a careful selection (ideally parsimonious [55]) of the eigenvectors of the Markov matrix needs to
be performed.

Grassmannian diffusion maps (GDMaps) [50] is a recently proposed variant of DMaps that defines similarity
(or affinity) between very high-dimensional data points based on their underlying subspace structure and leverages
DMaps to build a graph connecting subspaces on the Grassmann manifold [52,56–58]. Herein, the basic elements of
GDMaps are briefly presented and drawn from [28,50].
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2.1.1 Grassmann Manifold Principles

TheGrassmann manifoldor Grassmannian, denotedG(p, n) or Gp,n, is the set of allp-dimensional subspaces em-
bedded inRn. G(p, n) is a smooth manifold of dimensionp(n − p). A point on the Grassmannian,X ∈ G(p, n), is
represented (the Stiefel representation) by an orthonormal matrixX ∈ Rn×p : XT X = Ip whereIp ∈ Rp×p is the
identity matrix. That is, the pointX is defined as the space spanned by the basis vectorsX, X = span(X).

For a group of points on the Grassmannian, the Riemannian center of mass, also known as theKarcher mean
[29], is defined as the pointY that minimizes locally the cost functionλ : G(p, n) → R≥0 given by

λ(Y) =
∫

Gp,n

d2
Gp,n

(Y,X )dP (X ), (1)

wheredP (X ) = ρ(X )dGp,n(X ) is a probability measure over the infinitesimal volume elementdGp,n(X ) with
probability densityρ(X ) anddGp,n represents a distance measure on the Grassmannian. For a set of independent
sample points{Xi}N

i=1 ∈ G(p, n), the sample Karcher meanm is estimated as the local minimizer of

λ(m) =
1
N

N∑

i=1

d2
Gp,n

(Xi,m). (2)

Given the smoothness of the Grassmannian, one can define thetangent spaceat a given pointX ∈ G(p, n),
denotedTXG(p, n), as the derivative of a trajectoryγ(z) on the manifold. The tangent space is represented by the set
of all tangent vectors inX , such that

TXG(p, n) = {Γ ∈ Rn×p : Γ>X = 0}. (3)

The trajectoryγ(z) is defined as the shortest (geodesic) path between two points,X0 andX1 onG(p, n). If z is defined
on the unit line, i.e.,z ∈ [0, 1], the two points are denoted asγ(0) = X0 andγ(1) = X1.

In the neighborhood of a pointX0, mapping between the Grassmannian and the tangent space can be performed
by the logarithmicandexponentialmappings. Consider two pointsX0,X1 on G(p, n) with γ(0) = X0, γ(1) = X1

represented by the matricesX0, X1, andγ̇(0) = Ẋ0 represented by the matrixΓ0 ∈ TX0G(p, n). One can map from
a pointX1 to the tangent spaceTX0G(p, n) through the logarithmic mapping,

logX0
(X1) = Γ1 = U tan−1(Σ)V>. (4)

whereΓ1 ∈ TX0G(p, n) andU, Σ, V are obtained from the singular value decomposition (SVD) of the matrix
M = (X1 −X0X>

0 X1)(X>
0 X1)−1 = UΣV. Moreover, one can map from the pointΓ1 ∈ TX0G(p, n) to the point

X1 through the exponential mapping:

expX0
(Γ1) = X1 = X0V cos(Σ) + U sin(Σ), (5)

where matricesU, Σ, V are defined by the SVD ofΓ1 = UΣV>. Additional details can be found in [59].
Points on the Grassmannian are connected with smooth curves along which metrics of distances can be de-

fined. Several such metrics exist [57]. Perhaps the most commonly used distance metric is thegeodesicdistance
dG(p,n)(X0,X1) between two pointsX0,X1 ∈ G(p, n), which corresponds to the distance over the geodesicγ(t),
t ∈ [0, 1], and is expressed as

dG(p,n)(X0,X1) = ‖B‖2, (6)

whereB = (β1,β2, . . . , βp) is the vector of principal angles obtained from the full SVD ofX>
0 X1 = UΣV> with

B = cos−1(Σ).
As we will see in the subsequent sections, a particularly useful way to analyze data on the Grassmannian is to

embed the manifold into a Hilbert space using a valid kernel [60]. A Grassmannian kernelk is defined as the map

k : G(p, n)× G(p, n) → R, (7)
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wherek is positive semidefinite and invariant to the choice of basis. The notion of similarity is encoded by positive
semidefinite kernels on a graph and is maximized when the distance is equal to zero. Several families of Grassmannian
kernels exist in the literature [61], the most popular being theBinet-Cauchyandprojectionkernels. The Binet-Cauchy
kernel is used to define the Plücker embedding which maps the Grassmann manifoldG(p, n) to the projective space
P(

∧p Rn), where the exterior product
∧p V is thekth product of a vector spaceV. The Binet-Cauchy kernel is

defined as

kbc(X0,X1) = det(X>
0 X1)2, (8a)

kbc(X0,X1) =
p∏

i=1

cos2(βi), (8b)

where Eq. (8b) expresses the relation between the kernel and the principal angles. Similarly, the projection kernel is
defined using the projection embeddingΠ : G(p, n) → Rn×n given byΠ(X) = XT X. Finally, the projection kernel
is defined as

kp(X0,X1) = ‖(X>
0 X1)‖2

F, (9a)

kp(X0,X1) =
p∑

i=1

cos2(βi). (9b)

Throughout this work, we use the projection kernel. The interested reader is referred to [50] for more information on
how the Binet-Cauchy and projection kernels are constructed and applied.

2.1.2 Diffusion Maps on the Grassmannian

Consider a set of points (projected high-dimensional data) on the Grassmann manifoldG(p, n) given byGN =
{X1, ...,XN} and a positive semidefinite Grassmannian kernelk : G(p, n)×G(p, n) → R, also known as the diffusion
kernel. If we consider a random walk overGN having probability distributionf , WN = (GN , f,P), we can construct
the transition probability matrixP as follows. First, we construct the degree matrix,

Dii =
N∑

j=1

k(Xi,Xj), (10)

whereDii is a diagonal matrixD ∈ RN×N and determine the stationary distribution of the random walk as

πi =
Dii

N∑
k=1

Dkk

. (11)

Next, the kernel is normalized as

κij =
kij√

DiiDjj

, (12)

and the transition probability matrixPij of the random walk over the Grassmannian is given by

P t
ij =

κij

N∑
k=1

Dik

. (13)

Running the Markov chain forward in time is effectively equivalent to running a diffusion process on the manifold
which allows us to reveal the geometric structure of the data on the Grassmannian. From the eigendecomposition
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of Pt we find the truncated diffusion map basis consisting of the firstq eigenvectors{ξk}q
k=1, with ξk ∈ RN and

corresponding eigenvalues{λk}q
k=1. Therefore, the diffusion coordinates are defined as

Θj = (θj0, ..., θjq) = (λ0ξj0, ..., λqξjq), (14)

whereξjk corresponds to the positionj of ξk. Due to the spectral decay of the eigenvalues of the sparse Markov
matrix, usually a smallq is sufficient to capture the essential geometric structure of the dataset.

We note here that there are two essential features that distinguish the GDMaps from the conventional DMaps:

1. Data points lie onG(p,n): The data on which DMaps is performed are, in fact, subspaces that compactly
span the space in which the original data lie.

2. A Grassmannian kernel is employed:The Grassmannian kernel is an effective means of assessing the simi-
larity between subspaces.

The motivation to use a subspace representation is primarily related to the difficulty in assessing similarity between
very high-dimensional objects and is further elaborated in [50].

2.2 Geometric Harmonics (GH)

Introduced by Coifman and Lafon [53] and based on the Nyström method, GH is a method for extending an empirical
function defined on a setX to a setX̄, whereX ⊂ X̄. This out-of-sample extension scheme aims to deal with
the limitations of similar techniques (e.g., kriging) related to the choice of a scale of extension. If we assume that a
real-valued functionf : X → R is defined onX, GH provides a way to find an extension off , say a new function
F : X̄ → R.

To begin, consider a symmetric, positive semidefinite, and bounded kernelk : X̄ × X̄ → R, which defines
a unique reproducing kernel Hilbert spaceH of functions defined on̄X, for which k is the reproducing kernel. A
typical choice is the Gaussian kernel, expressed by

Kij = k(xi, xj) = exp

(
− ‖xi − xj‖2

2

ε2

)
, (15)

whereε is a tunable length scale,i, j = 1, ...,N , and‖ · ‖2 is the Euclidean norm.
Given the above, it is possible to represent the functionf in terms of the eigenfunctions ofk and then extend it

for out-of-sample predictions [62]. GivenN realizations of the functionf(x), denotedY = {yi} = {f(xi)}, i =
1, . . . ,N , evaluated at a set of sample pointsX = {xi}, i = 1, . . . ,N , we evaluate the kernel matrixK with
elementsKij = k(xi, xj) and perform an eigen decomposition to obtainl eigenvalues,Λ = diag(λi), i = 1, . . . , l
and eigenvectorsΨ = [ψi], i = 1, . . . , l with l = maxi | λi ≥ δλ0. We then project the functionf onto the space
spanned byψi, i = 1, . . . , l:

f 7→ Pδf =
l∑

j=1

〈f, ψj〉Xψj . (16)

Practically, this is achieved by projecting the pointsY asYδ = ΨᵀY .
We then apply the Nyström extension to extend the discrete eigenvectors onX to eigenfunctions on̄X corre-

sponding toN∗ out-of-sample points̄xi, i = 1, . . . ,N∗. To do so, we build the extended kernel matrix asK̄ having
elementsK̄ij = k(x̄i, xj). The extended eigenvectors, or geometric harmonics, are then expressed in the matrixΦ
whosepth component evaluated at extension pointx̄i is given by

φ
(p)
i = φ(p)(x̄i) =

1
λp

N∑
j=1

K̄ijψ
(p)
j . (17)
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Again, for practical implementation, the GH matrix is constructed simply asΦ = K̄ΨΛ−1.
Finally, we extend the functionPδf onX in basisψj to basisφj on X̄ as

Ef(x̄) =
l∑

j=1

〈f, ψj〉Xφj(x̄), (18)

which can be performed for out-of-sample extension to a set of predicted pointsȲ as

Ȳ = ΦYδ = Φ = K̄ΨΛ−1ΨᵀY. (19)

For more details and examples on GH, the reader is referred to [53].

2.3 Polynomial Chaos Expansion (PCE)

We assume a model denoted asM(X), X being ak-variate random variable defined on the probability space
(Ω,Σ, P ) and characterized by the joint probability density function (PDF)%X : Z → R≥0, whereZ ⊆ Rk is
the image space,Ω the sample space,Σ the set of events, andP the probability measure. Throughout this work it
is assumed thatX consists of independent random variables; however, we note that the PCE method is applicable
for the case of dependent random variables as well; see e.g., [63–65]. Then, assuming that modelM satisfies the
conditions of the Doob-Dynkin lemma [66], its outputM(X) is a random variable dependent onX. In the following,
we consider for simplicity a single model output, such thatY (ω) = M(X(ω)) ∈ R, ω ∈ Ω. Nevertheless, the
extension to multivariate outputs is straightforward, as the PCE approximation described next can be applied elemen-
twise. Note that in the following we use the same notation for a random variableX and a realizationX(ω); however,
the distinction between the two should be clear from the context.

Under the assumption of a single model output, the PCE is a spectral approximation of the form

M(X) ≈ M̃(X) =
S∑

s=1

csΞs(X), (20)

wherecs are scalar coefficients andΞs are multivariate polynomials that are orthonormal with respect to the joint
PDF%X, such that

E[ΞsΞt] =
∫

Z

Ξs(X)Ξt(X)%X(X)dX = δst, (21)

whereδst denotes the Kronecker delta. Depending on the PDF%X, the orthonormal polynomials can be chosen
according to the Wiener-Askey scheme [2] or be numerically constructed [67,68]. SinceX is assumed to consist of
independent random variablesX1, . . . , Xk, the joint PDF is given as

%X(X) =
k∏

i=1

%Xi(Xi), (22)

where%Xi
is the marginal PDF of random variableXi. Accordingly, the multivariate orthogonal polynomials are

constructed as

Ξs(X) ≡ Ξs(X) =
k∏

i=1

ξsi
i (Xi), (23)

whereξsi
i are univariate polynomials of degreesi ∈ Z≥0 and orthonormal with respect to the univariate PDF%Xi ,

such that

E
[
ξsi

i ξti
i

]
=

∫

Zi

ξsi
i (Xi)ξti

i (Xi)%Xi(Xi) dXi = δsiti . (24)
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The multi-indexs = (s1, . . . , sk) is equivalent to the multivariate polynomial degree and uniquely associated to the
single indexs employed in Eq. (20), which can now be written in the equivalent form,

M(X) ≈ M̃(X) =
∑

s∈Λ

csΞs(X), (25)

whereΛ is a multi-index set with cardinality#Λ = S. The choice of the multi-index setΛ plays a central role
in the construction of the PCE, as it defines which polynomials and corresponding coefficients form the PCE. The
most common choice, as well as the one employed in this work, is that of a total-degree multi-index set, such that
Λ includes all multi-indices that satisfy‖s‖1 ≤ smax, smax ∈ Z≥0. In that case, the size of the PCE basis isS =
(smax + k)!/smax!k!, i.e., it scales polynomially with the input dimensionk and the maximum degreesmax. For the case
of high-dimensional input random variablesX, several sparse PCE algorithms have been proposed in the literature
for the construction ofΛ such that the impact of the curse of dimensionality is mitigated [10,12–14,69,70].

Once the multi-index setΛ is fixed, the only thing remaining to complete the PCE is to compute the coeffi-
cients. Several approaches are suggested in the literature for computing the PCE coefficients, e.g., pseudo-spectral
projection [71–74], interpolation [75,76], and, most commonly, regression [4,10,13,14,69,70,77,78]. The latter op-
tion is employed in this work also, such that the PCE coefficients are obtained by solving the penalized least squares
problem [79],

arg min
c∈R#Λ





1
N

N∑

i=1

(
M(Xi)−

∑

s∈Λ

csΞs(Xi)

)2

+ λJ(c)



, (26)

whereλ ∈ R is a penalty factor,J(c) a penalty function acting on the vector of PCE coefficientsc ∈ R#Λ, and
X = {Xi}Ni=1 an experimental design (ED) of random variable realizations with corresponding model outputs
Y = {Yi}Ni=1. Common choices for the penalty functionJ(c) are thè 1 and`2 norms, in which case problem (26) is
referred to as LASSO (least absolute shrinkage and selection operator) and ridge regression, respectively. Removing
the penalty term results in an ordinary least squares (OLS) regression problem.

3. HIGH-DIMENSIONAL SURROGATES USING PCE ON THE GRASSMANNIAN DIFFUSION
MANIFOLD

In the next sections, the essential ingredients of the proposed method for constructing surrogate models on lower-
dimensional manifolds are analytically presented. The proposed approach is composed of two paths: (1) an encoder
path where high-dimensional model data are embedded onto a low-dimensional Grassmannian diffusion manifold
and a PCE surrogate is constructed to map from the input space to the low-dimensional latent space and (2) a decoder
path in which predicted low-dimensional solutions in the latent space are expanded to reconstruct corresponding full,
high-dimensional solutions. The approach is illustrated graphically in Fig. 1.

3.1 Encoder Path

The encoder path to produce an inexpensive mapping from the input space to a low-dimensional latent space represen-
tation of the high-dimensional response is detailed herein and the corresponding algorithm is provided in Algorithm 1.

3.1.1 Training Realizations

Consider an EDX = {X1, ...,XN } with N i.i.d. random samplesXi ∈ Rk drawn from the joint PDF%X. A
modelM : Xi ∈ Rk → Yi ∈ Rn×m (analytical or computational) is then used to generate the corresponding model
evaluationsY = {Y1, ...,YN }. We assume that the dimensionality of the quantity of interest (QoI)Y is high, e.g.,
on the order ofO(104−6) corresponding, for example, to the number of degrees of freedom in the system, the number
of time instants over which the solution is obtained, or both. We further assume that a train-test splitting procedure
has already been performed for the evaluation of the surrogate model on previously unseen data. Thus,N represents
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FIG. 1: A schematic illustrating the proposed encoder-decoder framework for constructing PCE surrogates on Grassmannian
diffusion manifolds. The GrassmannianG(p, n) on which the set of{Ui}Ni=1 matrices lives, is depicted. A second Grassman-
nian G(p, m) exists, on which the{Vi}Ni=1 matrices live. The diffusion manifold, represented by the diffusion coordinates
{Θi}Ni=1, is also depicted. Local GH models are used to identify inverse mappings between the diffusion coordinates and points
{Γu,i,Γv,i}Ni=1 that live on the various tangent spacesTmi . Finally, exponential mappings and reverse SVD are used for sample
reconstruction.

Algorithm 1: Polynomial chaos expansion on diffusion manifolds (encoder path)

input : ED X = {X1, ...,XN } whereXi ∈ Rk andY = {Y1, ...,YN } whereYi ∈ Rn×m via model
M(X)

output: Diffusion coordinatesΘ = {Θ1, ...,ΘN } whereΘi ∈ Rq and PCE surrogatẽL
1 for i ← 1 to N do
2 Perform SVDYi = UiΣiVi

> whereUi ∈ G(p, n) andVi ∈ G(p,m)
end

3 Construct a Grassmannian diffusion kernelk(U,V), e.g., the Binet-Cauchy via Eq. (8)
4 Obtain the diffusion coordinates{Θi ∈ Rq}Ni=1 [with Eqs. (13) and (14)] whereq ¿ n×m

5 Construct PCE approximatioñL(X) =
∑

s∈Λ csΞs(X) wherecs ∈ Rq can be computed via Eq. (26)
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the number of training samples which, for most real-world engineering applications, is rather small, e.g., on the order
of O(101−3).

3.1.2 Grassmannian Diffusion Manifold Projection

As a first step, we perform linear dimension reduction by projecting the high-dimensional data points onto the Grass-
mann manifold. Prior to the projection, each data point is reshaped to as close to a square matrix as possible, which
allow us to perform significant dimension reduction while preserving the most essential information. For the set of
N dataY = {Y1, ..,YN }, Yi ∈ Rn×m, we project each data pointYi onto the Grassmannian by performing a thin
singular value decomposition (SVD) as

Yi = UiΣiV>
i , (27)

where the columns of the matrices (subspaces)Ui ∈ Rn×p andVi ∈ Rm×p contain orthonormal singular vectors
such thatU>

i Ui = Ip andV>
i Vi = Ip, andΣi ∈ Rp×p is a diagonal matrix whose nonzero elements are the singular

values ordered by magnitude. Therefore,Ui,Vi live on the GrassmanniansG(p, n) = {span(U) : U ∈ Rn×p} and
G(p,m) = {span(V) : V ∈ Rm×p}, respectively. The value of dimensionp is either specifieda priori, or computed
automatically by assigning a tolerance for the SVD.

Next, for every pair[Ui,Uj ] and [Vi,Vj ] we compute the entries ofkij of the kernel matriceskij(U) and
kij(V). We choose to construct either the Binet-Cauchy kernel in Eq. (8) or the projection kernel in Eq. (9); thus the
mappings are defined askij(U) : G(p, n) × G(p, n) → R andkij(V) : G(p,m) × G(p,m) → R, respectively. We
then compute the composed kernel matrixK(U,V) either by taking the sum or product of the corresponding kernels,
i.e.,

K(U,V) = K(U) + K(V), (28a)

K(U,V) = K(U) ◦K(V), (28b)

where◦ denotes the Hadamard product. The composed kernelK(U,V), having componentskij , is then used to
construct the diagonal matrixD ∈ RN×N in Eq. (10) and then the normalized matrixκ with componentsκij in
Eq. (12). Next we construct the transition probability matrixPt of the Markov chain over the data and we perform
an eigendecomposition ofPt to determine the truncated diffusion map basis ofq eigenvectors{ξk}q

k=1, with ξk ∈
RN and corresponding eigenvalues{λk}q

k=1. The diffusion coordinates are therefore given byΘ = {Θ1, ...,ΘN }
whereΘi ∈ Rq. Herein, we will refer to the mapping of the input parametersX to the diffusion coordinatesΘ as
L : Xi ∈ Rk → Θi ∈ Rq.

The dimensionq of the diffusion coordinatesΘi ∈ Rq (embedding) is much smaller than the dimension of the
data on the ambient spaceYi ∈ Rn×m (i.e., q ¿ n ×m) and therefore GDMaps allows us to achieve a significant
dimension reduction.

3.1.3 Surrogate Modeling via PCE

Given a training dataset of input random variable realizationsX = {X1, ...,XN }, Xi ∈ Rk, and corresponding
solutions projected on the latent spaceΘ = {Θ1, ...,ΘN }, Θi ∈ Rq, we construct a PCE as explained in Section 2.3
to approximate the true encoderL : X → Θ as

L̃(X) =
∑

s∈Λ

csΞs(X), (29)

whereΛ is a total-degree multi-index set,Ξs are the multivariate orthonormal polynomials, and the PCE coefficients
are now vector-valued with dimension equal to the one of the diffusion coordinates, i.e.,cs ∈ Rq.

To assess the predictive ability of the PCE surrogate, we employ an error metric known as thegeneralization
error [9], which is defined as

εgen = EX

[(L(X)− L̃(X)
)2

]
. (30)
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We approximateεgen with thevalidation error, which is computed on a validation dataset ofN∗ test realizations. The
validation error is computed as

εval =
∑N∗

i=1

(
Θ∗

i − L̃(X∗
i )

)2

∑N∗
i=1

(
Θ∗

i − Θ̄∗)2 , (31)

where{X∗
i ∈ Rk}N∗i=1, {Θ∗

i ∈ Rq}N∗i=1, andΘ̄∗ = (1/N∗)
∑N∗

i=1 Θ∗
i is the mean response. Accordingly, the total

degreesmax is chosen so that the validation error is minimized. In cases where a validation dataset cannot be generated
due to computational constraints, alternative measures such as thek-fold cross validationcan be considered [9,12,
13]. However, such techniques introduce different computational costs, as they require the construction of multiple
surrogates for different partitionings of the training dataset; therefore, a prior evaluation of the trade-off and respective
costs is required.

3.2 Decoder Path

Given predictions from the PCE in the low-dimensional latent space (Grassmannian diffusion manifold), we recon-
struct the approximate high-dimensional solution using the decoder path described below and detailed in Algorithm 2.

Algorithm 2: Polynomial chaos expansion on diffusion manifolds method (decoder path)

input : Testing samplesX ∗ = {X1, ..,XN∗}
output: Predicted solutionsY ∗ = {Y1, ..,YN } for testing samplesX ∗

1 ` = 2
2 while N h

min > 5 andεt > 10−2 do
3 Perform k-means clustering to identify clusters{Ch}`

h=1 with Nh points, whereh = 1, .., `

4 Compute the Karcher meansmu,h,mv,h from Eq. (2), of points{Ui}Nh

i=1 ∈ Ch and{Vi}Nh

i=1 ∈ Ch

5 Having as originmu,h,mv,h, project points ontoTmu,h
, Tmv,h

via logarithmic mapping with Eq. (4)
6 Project back to the Grassmannian via exponential mapping with Eq. (5)
7 Compute MSEU, MSEV with Eq. (33)
8 Compute total errorεt

9 ` ← ` + 1
end

10 Construct2` GH models{fCh

U }`
h=1 : Rq → Rn×p and{fCh

V }`
h=1 : Rq → Rm×p to map diff. coordinates

{Θi}Ni=1 and points on the tangent space{Γu,i,Γv,i}Ni=1 of the Grassmannian, based on Section 3.2.1
11 Construct PCE surrogate to map{Θi}Ni=1 to singular values{Σi ∈ Rp×p}Ni=1

Out-of-sample prediction
12 Sample new pointsX ∗ = {X1, ..,XN∗}
13 for i ← 1 to N∗ do
14 Compute the diffusion coordinatesΘ∗

i with PCE modelL̃
15 Identify the clusterCh in which pointi belongs to (using a Euclidean metric)
16 ComputeΓ∗u,Ch,i = fCh

U (Θ∗
Ch,i) andΓ∗v,Ch,i = fCh

V (Θ∗
Ch,i)

17 Perform exponential mapping to obtainU∗
i ∈ Rn×p andV∗

i ∈ Rm×p

18 Use PCE of singular values to obtainΣ∗
i ∈ Rp×p

19 Obtain predicted solution asY∗
i = U∗

i Σ
∗
i V

∗
i

end
20 Obtain the set of predicted solutionsY ∗ = {Y1, ..,YN∗}
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3.2.1 Adaptive Clustering of Solutions on the Manifold

An adaptive technique is proposed to cluster the diffusion coordinates{Θi}Ni=1 to iteratively identify an optimal
number of clusters̀, such that the distance between points belonging to one cluster is minimized both on the diffusion
manifold and on the Grassmannian. We note that since the diffusion maps basis is constructed with the use of a
Grassmannian kernel (affinity matrix), the notion of similarity on the Grassmannian is preserved such that points that
are close on the Grassmannian are similarly close on the diffusion manifold.

To partition points at each iteration we use thek-means clustering algorithm. We begin with the smallest possible
number of clusters, i.e.,̀= 2. At each iteration and for each clusterCh whereh = 1, .., `, we compute the Karcher
meansmu,h,mv,h from Eq. (2), of points{Ui}Nh

i=1 ∈ Ch and{Vi}Nh

i=1 ∈ Ch, respectively, whereNh represents the
total number of points for a given cluster. For the computation of the Karcher means and the minimization of the loss
function we use stochastic gradient descent [80].

Having as origin the Karcher meansmu,h,mv,h, we project the points of each cluster to the corresponding
tangent spacesTmu,h

, Tmv,h
via the logarithmic mapping in Eq. (4). Next we project the same points back onto the

Grassmannian via the exponential mapping in Eq. (5). This procedure can be expressed as

{Ui ∈ Gp,n}Nh

i=1 → {Γu,i ∈ Tmu,h
(Gp,n)}Nh

i=1 → {Ũi ∈ Gp,n}Nh

i=1, (32a)

{Vi ∈ Gp,n}Nh

i=1 → {Γv,i ∈ Tmv,h
(Gp,m)}Nh

i=1 → {Ṽi ∈ Gp,m}Nh

i=1, (32b)

where the subscripth corresponds to a given cluster. Since the logarithmic and exponential mappings are only
accurate in the local neighborhood of their origin (Karcher mean), the projection introduces error for points that
deviate significantly from the Karcher mean. The pointwise error of the mapping of points{Ui}Nh

i=1 and{Vi}Nh

i=1 to
the tangent spaces and back is computed via the mean-squared error (MSE) as

MSEU =
1
Nh

Nh∑

i=1

(Ui − Ũi)2, (33a)

MSEV =
1
Nh

Nh∑

i=1

(Vi − Ṽi)2, (33b)

respectively. Finally, the total errorεt at each iteration is computed as the average of errors corresponding to each
cluster. A cluster of points that are not “close” on the Grassmannian will result in a significant error.

We repeat this process until the error is minimized or until a specified minimum number of points has been
detected in a cluster (usuallyN h

min ' 5− 10). Alternatively, the process can stop when the total error is below a
predefined threshold, e.g.,εt < 10−2. Once the optimal number of clusters` has been identified and the data on
the manifold{Θi}Ni=1 have been appropriately partitioned in{Ch}`

h=0 clusters, out-of-sample predictions can be
performed as described in the following section.

3.2.2 Out-of-Sample Extension for High-Dimensional Solution Prediction

ConsiderN∗ additional realizations of points on the diffusion manifold{Θ∗
i ∈ Rq}N∗i=1 have been generated using

the PCE surrogate. We propose the following inverse map framework to return samples to the physically interpretable
space and compute the reconstructed samples{Y∗

i ∈ Rn×m}N∗i=1.
First, we identify a mapping between training data on the diffusion manifold{Θi}Ni=1 and corresponding points

on the tangent spaces of the Grassmannian{Γu,i,Γv,i}Ni=1 by constructing2` local geometric harmonics (GH) models
as described in Section 2.2, two for each clusterCh, h = 1, . . . , `, as follows:

{fCh

U }`
h=1 : Rq → Rn×p, (34a)

{fCh

V }`
h=1 : Rq → Rm×p, (34b)
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wherefCh

U andfCh

V correspond to the mapping of diffusion coordinatesΘ∗, to matricesΓ∗u,Γ∗v, respectively, for
clusterCh. More specifically, using the GH models, we compute the tangent space matrices as

Γ∗u,Ch,i = fCh

U (Θ∗
Ch,i), i = 1, . . . ,N∗, (35a)

Γ∗v,Ch,i = fCh

V (Θ∗
Ch,i), i = 1, . . . ,N∗, (35b)

whereΓ∗u,Ch,i,Γ
∗
v,Ch,i reside on the tangent spacesTCh

G(p, n) andTCh
G(p,m), respectively, for clusterCh.

Once the points on the tangent spaces{Γ∗u,Ch,i ∈ Rn×p}N∗i=1 and{Γ∗v,Ch,i ∈ Rm×p}N∗i=1 have been computed,

the exponential mapping in Eq. (5) is used to project onto the points{U∗
i ∈ Rn×p}N∗i=1 and{V∗

i ∈ Rm×p}N∗i=1 on
the GrassmanniansGp,n andGp,m (where here we drop theCh subscripts for simplicity). Finally, we construct a
global PCE surrogate to map between diffusion coordinates{Θi}Ni=1 and the diagonal singular value matrices{Σi ∈
Rp×p}Ni=1, which can be used to estimate new realizations of the singular values{Σ∗

i ∈ Rp×p}N∗
i=1 corresponding

to specific out-of-sample diffusion coordinates,{Θ∗
i }Ni=1. Reconstruction of samples is achieved by multiplying the

above predicted matrices, such that
Y∗

i = U∗
i Σ

∗
i V

∗
i , (36)

wherei = 1, ...,N∗ andY∗
i ∈ Rn×m.

4. PREDICTION ACCURACY

To assess the accuracy of predictions of the proposed method, we introduce three metrics. The first scalar metric is
the relativeL2 error given by

L2(Ypred,Yref) =
‖Ypred−Yref‖2

‖Yref‖2

, (37)

where‖ · ‖2 denotes the standard Euclidean norm andYpred,Yref are the prediction and reference responses, respec-
tively. The second scalar metric we introduce is theR2 score, also known as the coefficient of determination defined
as

R2 = 1−

w∑

i=1

(
Ypred,i −Yref,i

)2

w∑

i=1

(
Yref,i −Yref

)2
, (38)

wherew is the total number of mesh points of the QoI andYref is the mean reference response. The final metric we
introduce is the absolute relative error which measures the error locally, in individual mesh points of the QoIs and is
given by the following expression:

ε =

∣∣∣∣∣
Ypred−Yref

Yref

∣∣∣∣∣. (39)

While the latter nonscalar metric is employed in the sequel to measure the error of individual realizations and provide
a visual representation of them, the two scalar metrics are used to evaluate the overall accuracy of the proposed
surrogate for a large number of additional realizations.

5. APPLICATIONS

5.1 Application 1: Dielectric Cylinder in Homogeneous Electric Field

In this first example, we consider a model problem from electromagnetic field theory, that of an infinitely long dielec-
tric cylinder suspended in a homogeneous electric field. Due to translational invariance along thez axis the problem
can be reduced to two dimensions. Thus, the computational domain is given asΩ = [−1, 1] × [−1, 1] and the cylin-

der’s domain byDc =
{
x = (x, y) |

√
x2 + y2 ≤ r0

}
, wherer0 is the cylinder’s radius. The dielectric material of
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the cylinder has the relative permittivityεc, while outside the cylinder’s domain the relative permittivity isεo. The
homogeneous electric field is given ase∞ = (E∞, 0). We further assume Dirichlet bc on the left and right bound-
aries of the rectangular domainΩ and Neumann bc on its top and bottom boundaries. The Dirichlet and Neumann
boundaries are denoted withΓD andΓN, respectively. The electric potentialu(x) in Ω can be computed by solving
the Laplace equation,

−∇ · (ε(x)∇u(x)) = 0, x ∈ Ω, (40a)

u(x) = u∗(x), x ∈ ΓD, (40b)

(∇u(x)) · n = (∇u∗(x)) · n, x ∈ ΓN, (40c)

wheren denotes the outer normal unit vector, the permittivityε(x) is given as

ε(x) =

{
εc, x ∈ Dc,

εo, x ∈ Ω \Dc,
(41)

andu∗, which is also the analytical solution to the problem, is given by

u∗(x) = −E∞x





1− εc/εo − 1
εc/εo + 1

r2
0

x2 + y2
, x ∈ Ω \Dc,

2
εc/εo + 1

, x ∈ Dc.
(42)

We consider variations in the electric potential resulting from stochasticity in two input parameters, the cylinder’s
radiusr0 and the strength of the electric fieldE∞. Information related to parameter description and values is provided
in Table 1.

We generateN = {150, 400, 800} training samples{Xi ∈ RN×2}3
i=1, with corresponding model outputs{Yi ∈

RN×6400}3
i=1 where the square computational domain has been discretized inw = (80× 80) = 6400mesh points.

GDMaps converged to a Grassmann manifold dimension ofp = 30 which results in matrices on the Grassmannian
{Ui,Vi ∈ G(30,80)}Ni=1 for each training dataset. Based on the residuals computed by the eigendecomposition of
the Markov matrix [55], the firstq = 4 nontrivial diffusion coordinates are considered, specifically{θ1,θ7, θ6,θ8},
{θ1,θ6,θ7, θ5}, and{θ1,θ7,θ5, θ8}, to represent the embedding structure for the three datasets withN = 150, 400,
and800, respectively. Therefore the method allows us to perform a dimension hyper-reduction fromR6400 to R4,
unfold the intrinsic geometric structure of the data, and reveal the essential features. A surrogate model is constructed
with a maximum degree of polynomialssmax = 3. The adaptive clustering algorithm converged to` = {13, 25, 30}
clusters, respectively. In Fig. 2, we present 2D plots of the diffusion coordinates forN = 800.

A comparison between the reference response and the GDMaps PCE prediction for a random sample(r0 =
0.273, E∞ = 10.523) is presented in Fig. 3 for all three training datasets. Overall, we observe a very good match
between the reference field and surrogate predictions. The relative error is calculated based on Eq. (39), and as
expected decreases as the number of training samples increases. To assess more accurately the predictive ability
of the surrogate model we compute the relativeL2 error and coefficient of determination (orR2 score) based on

TABLE 1: Details of the input parameters of the dielectric cylinder application

Parameters Uncertainty/value**

Cylinder radius r0 ∼ U(0.20, 0.70)∗

Strength of electric field E∞ ∼ U(8, 18)∗

Relative permittivity of cylinder’s material εc 3
Relative permittivity of surrounding space εo 1

* U(a, b) denotes a uniform distribution with lower bounda and upper boundb.
** All sizes are expressed in SI units.
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FIG. 2: 2D plots of the diffusion coordinates{θ1, θ7, θ5, θ8} for Grassmann manifold dimensionp = 30, N = 800 training
samples, and̀ = 30clusters. Different colors denote the different clusters.

FIG. 3: Reference, prediction, and relative error of the electric potential fieldu∗(x, y) for the random sample(r0 = 0.273, E∞ =
10.523), p = 40, and forN = 150(first row),N = 400(second row), andN = 800(third row) training samples

Eqs. (37) and (38), respectively, forN∗ = 10,000 testing realizations and we present the first two moments of the
corresponding metric value distributions in Table 2. Clearly, there is a significant improvement of results when we
increase the number of training samples; however, we observe that the surrogate is able to perform very well in the
small-data regime.

In the context of UQ, we next perform moment estimation where we compute the mean field and variance field
for N∗ = 10,000with Monte Carlo simulation (MCS) on both the original modelM and GDMaps PCE. The results
for the moment and variance fields are presented in Figs. 4 and 5, respectively. In both cases, we see a very close
agreement between the reference response and the surrogate prediction.
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TABLE 2: RelativeL2 error andR2 score for different training datasets andN∗ = 10,000testing realizations

Training data
RelativeL2 error R2 score

Mean Std Mean Std
N = 150 6.704× 10−3 4.071× 10−3 9.9993× 10−1 8.00× 10−5

N = 400 4.967× 10−3 2.644× 10−3 9.9996× 10−1 3.90× 10−5

N = 800 4.980× 10−3 2.689× 10−3 9.9997× 10−1 4.00× 10−5

FIG. 4: Mean fields computed with the original model and GDMaps PCE of the electric potential fieldu∗(x, y) for N = 150
(first row),N = 400(second row), andN = 800(third row) training samples and 10,000 testing samples

5.2 Application 2: Lotka-Volterra Dynamical System

In this example, we consider the classic Lotka-Volterra dynamical system [81], also known as the predator-prey equa-
tions, an example of a Kolmogorov model which describes the dynamics of a biological system in which two species
interact, a predator (e.g., foxes) and a prey (e.g., rabbits). The model is a pair of nonlinear ordinary differential equa-
tions (ODEs) defined as follows:

du

dt
= αu− βuv,

dv

dt
= δuv − γv,

(43)

whereu is the prey population,v is the predator population, andα,β,γ, δ are stochastic model parameters described
in Table 3. The equations have periodic solutions with90◦ phase difference and a linearization leads to solutions
similar to those of a simple harmonic oscillator.
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FIG. 5: Variance fields computed with the original model and GDMaps PCE of the electric potential fieldu∗(x, y) for N = 150
(first row),N = 400(second row), andN = 800(third row) training samples and 10,000 testing samples

TABLE 3: Details of the state variables and input parameters of the Lotka-Volterra equations

Description of variables/parameters Uncertainty/value
Population of prey species u u(t = 0) = 10

Population of predator species v v(t = 0) = 5
Natural growing rate of preys when no predator exists α ∼ U(0.90, 1)

Natural dying rate of preys due to predation β ∼ U(0.10, 0.15)
Natural dying rate of predator when no prey exists γ 1.50

Reproduction rate of predators per prey eaten δ 0.75

For illustration, we consider two stochastic parametersα andβ and employ GDMaps PCE to construct a surro-
gate model to predict the trajectory of both predator and prey species over time. We generateN = {50, 150, 600}
training samples{Xi ∈ RNi×2}3

i=1. For each training dataset, the system is solved using a fourth-order Runge-Kutta
method with periodT = 25, discretized inw = 512 points, thus resulting in a response matrixY ∈ RN×1024

where the corresponding solutions{u(t), v(t)} for each sample are concatenated in a single vector. Each solutions
is reshaped to a square matrix{Yi ∈ R32×32}Ni=1 and GDMaps is performed for a constant value ofp = 10, which
results in matrices on the Grassmannian{Ui,Vi ∈ G(10,32)}Ni=1. By keepingq = 3 parsimoniously selected diffusion
coordinates we converged to the first non-trivial coordinatesΘi = {θ1,θ2, θ5}, where{Θi ∈ R3}Ni=1. Finally, the
PCE surrogate is constructed with a maximum polynomial degreesmax = 3.

Results from the adaptive clustering algorithm for different training dataset sizes are presented in Fig. 6. The
algorithm converged tò = {4, 13, 44} clusters, respectively. In Fig. 7, the embedding represented by the diffusion
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FIG. 6: Average mean square error (MSEs) associated with the projection of clusters of points{Ui,Vi}Nk

i=1 to the tangent space
of the GrassmannianG(10,32) and back as a function of the number of clusters forN = {50, 150, 600}

FIG. 7: Clusters of points on the Grassmannian diffusion manifold represented by the first three nontrivial diffusion coordinates
{θ1, θ2, θ5} forN = 600and` = 44

coordinates forN = 600 where` = 44 is also shown. The prediction of the surrogate for the trajectories of both
the prey and predator species is presented in Fig. 8 where we compare reference solutions and predictions for three
random samples. We observe a considerable improvement of results when the number of training data increases, but
nonetheless find good agreement between some points even for small training set sizes. Finally, we compareN∗ =
5000testing realizations of the surrogate model with the corresponding reference solutions and plot the corresponding
error distributions in Fig. 9. We observe a rapid reduction in error (lowerL2, higherR2) from 50 to 150 training data
with continued, but less significant improvement from 150 to 600 training data.

5.3 Application 3: Advection-Diffusion-Reaction Equations

In the third example, we consider a system ofadvection-diffusion-reactionequations modeling a first-order chemical
reaction between two speciesA andB; the result is a formed speciesC in some domainΩ. The reaction reads

A + B
ε−→ C, (44a)
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FIG. 8: Comparison of trajectories of reference solutions (dashed) and predictions for the prey (solid magenta) and predator (solid
blue) species forN = {50, 150, 600} (rows) and three randomly generated samples (columns)

FIG. 9: Histograms of the relativeL2 error (left) and the coefficient of determination orR2 score (right) of predictions and
reference solutions forN = {50, 150, 600} andN∗ = 5000testing realizations

d[C]
dt

= K[A][B], (44b)

where[A], [B], [C] are the concentrations of the three species,ε is the diffusion coefficient, andK is the reaction
rate. According to the mass action law of chemical kinetics, the reaction rate ofC is proportional to the concentration
of the two speciesA, B [82]. The chemical reaction is modeled by the following set of equations:

∂[A]
∂t

+ v · ∇[A]−∇ · (ε∇[A]) = fA −K[A][B], (45a)

∂[B]
∂t

+ v · ∇[B]−∇ · (ε∇[B]) = fB −K[A][B], (45b)

∂[C]
∂t

+ v · ∇[C]−∇ · (ε∇[C]) = fC + K[A][B]−K[C], (45c)
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where speciesA, B, andC diffuse throughoutΩ (third terms in the left-hand side) and are advected with velocity
v (second terms in the left-hand side). The chemical reaction is represented in the right-hand side of Eq. (45) with
source termsfA, fB , andfC for speciesA, B, andC, respectively.

The chemical reaction takes place in a velocity field flowing around a cylinder and thus the above equations are
coupled with the incompressible Navier-Stokes nonlinear PDEs, defined as

ρ
(∂v

∂t
+ v · ∇v

)
= ∇ · σ(v, p) + f, (46a)

∇ · v = 0. (46b)

SpeciesA,B are injected into the system from two points at the top and bottom of the cylinder via the nonzero source
termsfA, fB and then advect and diffuse through the system. The third source term is set tofC = 0 and speciesC is
formed only as the result of the reaction ofA andB. For the numerical implementation of the above coupled system
of equations we use the FEniCS package [83].

We assume that stochasticity in the above system of coupled PDEs results from variations in the reaction rate
K and the diffusion coefficientε. In Table 4, the initial conditions and the distributions of stochastic parameters
are presented. As QoI we consider the concentration of speciesC at the final time step, whereT = 5 is the total
simulation time andn = 5000 is the number of time steps. The simulation takes place in a rectangular domain
Ω = [0, 2.2]×[0, 0.41] while the cylinder is centered atc = (0.2, 0.2) with radiusr = 0.05. The domain is discretized
with w = 2304mesh points. We generateN = 600 training samplesXi ∈ R2, i = 1, . . . ,N , and corresponding
model responsesYi ∈ R2304, i = 1, . . . ,N . In Fig. 10, nine realizations of the stochastic field solution are shown.
For the parametric uncertainty considered, we observe significant variations between the various profiles representing
the concentration ofC.

The solutions are reshaped to square matrices{Yi ∈ R48×48}Ni=1 and GDMaps is performed. In this example,
we aim to explore the method’s predictive ability by varying the dimension of the Grassmannian on which the data

TABLE 4: Details of the state variables and input parameters of the system
of advection-diffusion-reaction equations

Description of variables/parameters Uncertainty/value
Concentration of speciesA [A] [A](t = 0) = 0
Concentration of speciesB [B] [B](t = 0) = 0
Concentration of speciesC [C] [C](t = 0) = 0

Reaction rate K ∼ U(7.0, 13.0)
Diffusion coefficient ε ∼ U(0.005, 0.015)

FIG. 10: Realizations of the stochastic fieldY, representing the concentration of speciesC at the final time step, as a result of the
chemical reaction ofA andB with associated stochastic parameter valuesX
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are projected. We consider three values,p = {16, 28, 40} which result in matrices on the Grassmannian{Ui,Vi ∈
G(p,48)}Ni=1. Based on the decay of eigenvalues resulting from the DMaps we retainq = 3 of diffusion coordinates,
resulting in{Θi ∈ R3}Ni=1. The PCE surrogate is constructed with a maximum polynomial degree,smax = 3. The
adaptive clustering algorithm resulted in` = {37, 31, 38} clusters, respectively.

In Fig. 11, we present 3D plots of the parsimoniously selected diffusion coordinates on the Grassmannian dif-
fusion manifold for all three cases. In Fig. 12, we present the surrogate model predictions for a random sample
(K = 16.138, ε = 0.00127) for p = {16, 28, 40}, where the reference response, the surrogate prediction, and the
relative error computed with Eq. (39) are shown. We observe that for a small dimension of the Grassmann manifold,
the surrogate is able to capture the local intensities of the concentration of speciesC, however, with significant noise
in the prediction. As we increase the dimension, we notice a significant improvement in the results and a reduction of
the relative error. We observe that even though the number of diffusion coordinates remains constant in all three cases
(i.e.,q = 3), the dimension of the Grassmann manifold on which the data are projected in the intermediate dimension
reduction step significantly affects the predictive ability of the surrogate. We note that the larger relative errors near
the inflow boundary are caused due to the concentration (denominator) being close to zero.

To assess the overall performance of the surrogate, in Fig. 13 we plot the distributions of the relativeL2 error
and theR2 score for1500test realizations. Clearly, the two distributions are getting closer to zero and 1, respectively,
as the dimensionallity of the Grassmannian increases. Finally, for the same test realizations we perform moment
estimation and calculate the mean and variance fields of the concentration of speciesC via MCS with the original
model and with GDMaps PCE for the same testing realizations and forp = 40, shown in Fig. 14. As observed from
the plots, the method is able to accurately predict the first two moments of the field.

We have demonstrated that GDMaps PCE performs very well in cases where large variability of model solutions
is considered. The proposed approach results in significant cost reductions. More specifically, while a forward model

FIG. 11: Clustered diffusion coordinates{θ1, θ2, θ4} for Grassmann manifold dimension of (a)p = 16, (b) p = 28, and (c)
p = 40 forN = 600training samples

FIG. 12: Reference solution, surrogate prediction, and relative error of the concentration of speciesC for parameter realizations
(K = 16.138, ε = 0.00127) and Grassmann manifold dimensionp = {16, 28, 40}
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FIG. 13: Histograms of the relativeL2 error (left) and the coefficient of determination orR2 score (right) of predictions and
reference solutions forN∗ = 1500testing realizations, and Grassmann manifold dimension of (a)p = 16, (b) p = 28, and (c)
p = 40

FIG. 14: Mean field (top row) and variance field (bottom row) for Monte Carlo simulation ofN∗ = 1500samples, surrogate
prediction, and relative error forN = 600training samples and Grassmann dimensionp = 40

evaluation requires approximately45 sec to complete, the proposed surrogate is able to predict model responses in
an average of0.093sec, i.e.,483× faster. Extrapolating these times, we see that a MC simulation of10,000samples
with the original model would require∼ 5 days of CPU time to complete, while a MC simulation with GDMaps PCE
would only need∼ 15 min of CPU time. The computational gains of the proposed framework become all the more
prominent as the complexity, output dimensionality, and, therefore, the cost of the model increases.

6. DISCUSSION AND CONCLUSIONS

This paper introduces a manifold learning-based approach for the construction of surrogate models on lower-dimen-
sional manifolds for UQ in complex high-dimensional systems. The GDMaps PCE framework is specially designed
for applications of high-output dimensionality and nonlinearity. We introduced an encoder-decoder type framework
in which GDMaps, a two-step dimension reduction technique for feature extraction, is performed to project data onto
a Grassmannian and consequently onto a diffusion manifold. Diffusion coordinates are used to represent a lower-
dimensional embedding capable of capturing the salient information of the empirical dataset. A PCE surrogate is
constructed on the latent space, and an adaptive clustering technique is proposed to identify regions of response
similarity and consequently construct local geometric harmonics to naturally perform out-of-sample predictions.

We explored the method’s capabilities and limitations on three applications from electromagnetic field theory,
nonlinear dynamics, and chemical kinetics. Numerical results demonstrate that the proposed approach is able to ac-
curately predict new out-of-sample solutions. The dimension of the Grassmann manifold is an important factor for
the GDMaps PCE method. However, in all studied applications, we demonstrated that a very small number of coor-
dinates (two to four) representing the diffusion manifold can sufficiently capture the essential features. Furthermore,
the method performed successfully under the use of small datasets and it resulted in significant reductions of the
computational cost associated with the high-fidelity simulations. In the context of UQ, we have shown that GDMaps
PCE provides an appropriate framework to perform statistical moment estimation in a computationally efficient man-
ner and enables Monte Carlo simulations, which would otherwise be prohibitively expensive, to compute with the
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original model. An interesting future direction would be to explore whether PCE coefficients computed with data
on the latent space could provide useful information of QoIs in the ambient space for direct moment estimation and
sensitivity analysis.

Finally, although the proposed surrogate modeling method is ideally applicable to cases of complex models
generating high-dimensional responses, its computational cost will still become intractable in cases where the input
parameter space is also characterized by high-dimensionality. In such cases, methods exploiting sparse representa-
tions of PCE surrogates should be considered. These cases have not been considered. In addition, depending on the
variability of the data on the diffusion manifold, an experimental design based on a standard random or quasiran-
dom sampling technique might not be ideal. Greedy sampling techniques can be considered for such cases. These
limitations form challenges to be addressed in future work.
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