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Abstract. In this paper, a novel surrogate model based on the Grassmannian diffusion maps (GDMaps) and
utilizing geometric harmonics is developed for predicting the response of engineering systems and complex physical
phenomena. The method utilizes the GDMaps to obtain a low-dimensional representation of the underlying behavior
of physical/mathematical systems with respect to uncertainties in the input parameters. Using this representation,
geometric harmonics, an out-of-sample function extension technique, is employed to create a global map from the
space of input parameters to a Grassmannian diffusion manifold. Geometric harmonics is also employed to locally
map points on the diffusion manifold onto the tangent space of a Grassmann manifold. The exponential map is
then used to project the points in the tangent space onto the Grassmann manifold, where reconstruction of the full
solution is performed. The performance of the proposed surrogate modeling is verified with three examples. The first
problem is a toy example used to illustrate the development of the technique. In the second example, errors associated
with the various mappings employed in the technique are assessed by studying response predictions of the electric
potential of a dielectric cylinder in a homogeneous electric field. The last example applies the method for uncertainty
prediction in the strain field evolution in a model amorphous material using the shear transformation zone (STZ)
theory of plasticity. In all examples, accurate predictions are obtained, showing that the present technique is a strong
candidate for the application of uncertainty quantification in large-scale models.
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1. Introduction. Surrogate models (aka emulators or metamodels) have become an important
tool for uncertainty quantification because they afford a computationally efficient means of approx-
imating (often complex) input-output relations generated from high-fidelity computational models.
Surrogate models are constructed by training (or learning) a mathematical model from a finite set
of input-output observations referred to as the training set. Given a new set of input parameters,
where the solution of the model is unknown, the surrogate can then be used to predict the solution at
minimal cost. Surrogate models are typically classified as either intrusive or non-intrusive [45, 60].
Intrusive methods, such as those based on Galerkin schemes, typically provide good convergence
[28, 3], but their complexity limits their flexibility [10] and requires the development of new numer-
ical schemes and, hence, entirely new solvers. In contrast, non-intrusive methods are trained from
realizations of a deterministic solver (i.e. they can leverage pre-existing numerical methods and
solvers) at selected sample points generated from the uncertain parameters. Moreover, surrogate
models often provide an improvement over statistical approaches based on Monte Carlo simulation
(MCS). Although MCS is a versatile and non-intrusive method, it typically offers slow convergence
with the number of samples [26]. To circumvent this limitation, quasi Monte Carlo methods [9],
adaptive sampling techniques [59, 58], and other intelligent sampling techniques leveraging variance
reduction techniques [49, 21, 18, 5] are employed. Increasingly, these enhanced sampling methods
are being leveraged to improve the training efficiency of surrogate models; enabling surrogates to be
developed from far fewer training data.

Among the most widely-used surrogate models in UQ are polynomial chaos expansions (PCE)
[28] and Gaussian process (GP) regression (Kriging) [43, 55]. PCE was originally proposed by
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Wiener [64] based on the projection of random solutions onto a basis of Hermite polynomials, which
are orthogonal with respect to the Gaussian measure. Ghanem et al. [28] introduced the Stochastic
Galerkin projection for PCE, an intrusive method that requires the formulation of a system of
algebraic equations for distinct classes of problems. The generalized PCE (gPCE) [67] provides
improved convergence and enhanced flexibility by utilizing polynomial bases from the Wiener-Askey
scheme. Moreover, gPCE can be used in the construction of non-intrusive surrogate based on
collocation schemes aiming at enhanced versatility and convergence properties. On the other hand,
a GP approximates the input-output relation as a Gaussian stochastic process completely described
by its mean and correlation function. Learning a GP thus consists of determining the mean and
correlation functions. However, the computational complexity of the GP training process with n
observations is on the order O(n3), whereas the memory requirements scale with O(n2).

It is well known that the relationship between data dimensionality and model fidelity has a strong
influence on the computational performance of UQ for large-scale models. In this regard, dimension
reduction techniques have become attractive due to their ability to represent high-dimensional data
in a low-dimensional and more informative space (manifold) [52, 23, 12, 20]. Dimension reduction
techniques can be classified into linear and nonlinear methods. Linear methods include principal
component analysis (PCA) [27], locality preserving projections (LPP) [34], linear regression [54],
and singular value decomposition [62]. On the other hand, nonlinear methods are useful for con-
structing nonlinear maps between the high- and low-dimensional spaces. Nonlinear methods include
Isomaps [63], locally linear embedding (LLE) [56, 16], Kernel PCA [44], and diffusion maps (DMaps)
[15, 13]. It is worth noting that several methods based on DMaps have been proposed in the liter-
ature such as the method proposed by Soize and Ghanem [61] for sampling a random vector whose
probability distribution is constrained to an Euclidean manifold. They used DMaps for discovering
the underlying structure of the dataset. Moreover, DMaps has been used in the development of
surrogate models either based on local polynomial interpolations and the Nyström out-of-sample
extension [37], or based on neural networks and the Laplacian pyramids [38]. Further, a subspace
extension of Diffusion Maps, the Grassmannian Diffusion Maps (GDMaps), was introduced by dos
Santos et al. [19]. In this technique, a model dimension hyper-reduction is achieved by combining
a pointwise linear dimensionality reduction technique, projecting the high-dimensional data onto a
low-dimensional Grassmann manifold, and a multipoint nonlinear dimension reduction using Diffu-
sion maps which reveals the intrinsic structure of the data on the manifold. Recently, Kontolati et
al. [42] employed GDMaps and PCE in the development of a manifold learning based method for
UQ in systems describing complex processes.

In this work, we leverage the GDMaps to construct surrogate models for very high-dimensional
systems. More specifically, a set of low-dimensional coordinates embedding the high-dimensional
model data on the Grassmann manifold is obtained via Grassmannian diffusion maps (GDMaps).
This low-dimensional diffusion space serves as a connecting space between the parameter space and
the Grassmann manifold, where full solution reconstruction can be performed. To connect these
spaces, maps are constructed using the idea of out-sampling extension [8, 7, 48, 46]. Inspired by
the the Nyström extension [65, 35], Coifman and Lafon [14] introduced a scheme, referred to as
geometric harmonics (GH) for extending empirical functions only available at few locations. They
demonstrated that this process relates the function complexity and its extension, with important
implications to the construction of the lifting and restriction operators. In this paper, GH is employed
in the construction of an out-of-sample extension to create maps between spaces of interest. A global
GH surrogate is constructed between the parameter and diffusion spaces, while local GH surrogates
are constructed between the diffusion space and the Grassmann manifold via the tangent space,
a flat inner-product space allowing local exponential mapping onto the Grassmannian, where the
predicted model response can be constructed. Moreover, GH is also used to create a map between
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the parameter space and the space of singular values used in the contruction of the model prediction.
This paper is organized as follows. Section 2 discusses important background on the Grassmann

manifold. Section 3 provides an overview of the Grassmannian diffusion maps technique. Section
4 introduces GH as an out-of-sample function extension technique. Section 5 contains a detailed
description of the surrogate modeling approach, referred to as Grassmannian-Geometric Harmonics
Maps (Grassmannian-GHMaps), developed herein. In section 6, three examples are provided. The
first is a simple example used to explain the proposed method in a manner that is conceptually
understandable and easy to visualize. The second example uses the GDMaps surrogates to predict
the electric potential for a dielectric cylinder in homogeneous electric field, and is used to perform
error analysis on the proposed method. The third example develops a surrogate model for the
evolution of the strain field of amorphous solids under simple shear using the shear transformation
zone (STZ) theory of plasticity. Finally, concluding remarks are provided in Section 7. Furthermore,
the algorithms presented in this paper have been implemented in UQpy (Uncertainty Quantification
with python) [53], a general purpose Python toolbox for modeling uncertainty in physical and
mathematical systems.

2. Grassmann manifold. The concepts presented in this section are essential for the devel-
opment of a surrogate model based on the Grassmannian diffusion maps. Let us begin by defin-
ing a p-plane as a p-dimensional subspace, and a p-frame as a coordinate system that spans that
subspace. Based on these two concepts one can define two important manifolds, the Stiefel and
the Grassmann manifold. The Stiefel manifold V(p, n) is the set of all p-frames in Rn such that
V(p, n) = {X ∈ Rn×p : XᵀX = Ip}, where Ip ∈ Rp×p is the identity matrix and X ∈ Rn×p is an
orthonormal matrix [2]. The Grassmann manifold (or Grassmannian) G(p, n) is the set of p-planes
in Rn, where a point is given by X = span (Ψ), with Ψ ∈ V(p, n) [68]. It is worth noting that
X is identified as an equivalence class of n × p matrices under orthogonal transformation of the
Stiefel manifold [68, 69, 47]. Therefore, a point on the Grassmann manifold is represented by an
orthonormal matrix Ψ ∈ Rn×p (the Stiefel representation).

2.1. Tangent Space: Exponential and logarithmic maps. The Grassmann manifold is a
smooth and continuously differentiable manifold, which enables numerous mathematical operations
such as differentiation and optimization [22, 1]. Given that the Grassmann manifold is smooth and
continuously differentiable, one can define a trajectory γ(z), z ∈ [0, 1], known as geodesic, defining
the shortest path between two points, γ(0) = X0 = span(Ψ0) and γ(1) = X1 = span(Ψ1), on
the manifold G(p, n) [22]. The derivative of this trajectory at any point X (represented by Ψ)
defines the tangent space (TXG(p, n)), which is given by the set of all tangent vectors Γ such that
TXG(p, n) = {Γ ∈ Rn×p : Γ>Ψ = 0}. Therefore, given a tangent space TX0G(p, n) at X0, one can
map Γ1 onto the Grassmannian point γ(1) = X1 represented by Ψ1 via the exponential map

(2.1) Ψ1 = expX0
(Γ1) = expX0

(USVT ) = Ψ0Vcos (S) QT + Usin (S) QT ,

where Q ∈ Rn×n is an orthogonal matrix satisfying the following expressions.

(2.2) Vcos (S) QT = ΨT
0 Ψ1,

and

(2.3) Usin (S) QT = Ψ1 −Ψ0Ψ
T
0 Ψ1.

After appropriate manipulation, one can obtain the following expression.

(2.4) Utan (S) VT =
(
Ψ1 −Ψ0Ψ

T
0 Ψ1

) (
ΨT

0 Ψ1

)−1
.
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Consequently, one can write the logarithmic map from the Grassmannian to the tangent space,
logX : G(p, n)→ TXG(p, n) as

(2.5) logX (Ψ1) = Utan−1 (S) VT .

2.2. Grassmannian distance. The properties of the Grassmann manifold further afford a
notion of distance between points on it. Many definitions of distance exist and can be expressed
in terms of the principal angles between subspaces [31]. One can easily see that the cosine of
the principal angles θi ∈ [0, π/2] between two subspaces X = span(Ψx) and Y = span(Ψy) can
be computed from the singular values of ΨT

xΨy = ŪS̄V̄T , where Ū ∈ O(k), V̄ ∈ O(l), and
S̄ = diag(σ1, σ2, . . . , σp), with p = min(k, l). Thus, the principal angles are computed as θi =
cos−1(σi) [50]. A well-known and commonly used distance is the geodesic distance, dG(p,n) (X ,Y),
corresponding to the distance along the geodesic curve γ(z) parameterized by z ∈ [0, 1], and given
by dG(p,n) (X ,Y) = ‖s‖2 [66, 68, 29], where s = (θ1, θ2, . . . , θp) is the vector of principal angles. See
[19] for more definitions of distances on the Grassmann manifold.

2.3. Karcher mean. Consider a set of points (subspaces) on G(p, n). The Riemannian center
of mass of these points is known as Karcher mean, µG(p,n), and corresponds to the point Y ∈ G(p, n)
that minimizes the cost function σ2

G(p,n) : G(p, n)→ R+ [39, 30] given by

(2.6) σ2
G(p,n)(Y) =

∫
G(p,n)

d2
G(p,n)(Y,X )dP (X ),

where dP (X ) = ρ(X )dG(p, n) is a probability measure on the Grassmann manifold with probability
density function ρ(X ). Thus, the Karcher mean µG(p,n) = span(M) can be computed by solving the
optimization problem

(2.7) µG(p,n)
.
= argmin
Y∈G(p,n)

∫
G(p,n)

d2
G(p,n)(Y,X )dP (X ).

One can easily notice a similarity between Eq. (2.6) and the variance of a continuous random
variable, which gives a notion of dispersion around the mean. The Karcher variance σ2

G(p,n) and the
Karcher mean µG(p,n) can therefore be interpreted as the mean and variance of a continuous random
variable on G(p, n). With this interpretation, the Karcher mean can be estimated from a discrete
set of points on the Grassmann manifold S = {X1, . . . ,XN} ⊂ G(p, n), by solving the following
minimization

(2.8) µ̂G(p,n) ≈ argmin
Y∈G(p,n)

1

N

N∑
i=1

d2
G(p,n)(Y,Xi).

2.4. Grassmannian kernels. Kernel-based dimensionality reduction techniques such as the
conventional diffusion maps depend on the appropriate definition of a real-valued positive semi-
definite kernel k(xi, xj) with

∑
i,j cicjk(xi, xj) ≤ 0, where ci, cj ∈ R. In this regard, the Gaussian

kernel (Eq. 2.9) is perhaps the most widely used.

(2.9) k(Xi,Xj) = exp

(
−||Xi −Xj ||22

4ε

)
,

where Xi and Xj are the high-dimensional data and ε is a length-scale parameter. However, the
Gaussian kernel is not suitable to represent the underlying subspace structure of datasets. On
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the other hand, Grassmannian kernels are endowed with this feature, which is advantageous in
the analysis of high-dimensional data. A Grassmannian kernel is defined as a real symmetric map
k : G(p, n) × G(p, n) → R embedding the Grassmann manifold into a reproducing kernel Hilbert
space. Moreover, a Grassmannian kernel is invariant to the choice of basis and is positive semi-
definite. Several families of Grassmannian kernels, with different characteristics, are proposed in the
literature (see [31, 32, 33]). However, the most popular kernels are the Binet-Cauchy and Projection
kernels. The Binet-Cauchy kernel is constructed by embedding the Grassmann manifold G(p, n) into
a projective space P (

∧
p Rn). Considering two subspaces X = span(Ψx) and Y = span(Ψy), the

Binet-Cauchy kernel is given by

(2.10) kbc(X ,Y) = det
(
ΨT
xΨy

)2
,

or equivalently in terms of principal angles [31, 33]

(2.11) kbc(X ,Y) =

p∏
i=1

cos2(θi).

Another kernel frequently used in kernel-based methods on the Grassmann manifold is the
projection kernel. It is constructed based on the projection embedding Π : G(p, n) → Rn×n such
that Π (Ψ) = ΨΨT . This kernel is defined as

(2.12) kpr(X ,Y) = ||ΨT
xΨy||2F ,

or equivalently in terms of principal angles [31, 33]

(2.13) kpr(X ,Y) =

p∑
i=1

cos2(θi).

Further discussion of Grassmannian kernels and their specific use for Grassmannian diffusion
maps can be found in dos Santos et al. [17].

3. Grassmannian diffusion maps. The Grassmannian diffusion maps (GDMaps) [19] is a
nonlinear dimension reduction technique that uses diffusion maps to learn the low-dimensional struc-
ture of a dataset on the Grassmann manifold. GDMaps is a two-stage dimension reduction. The
first dimensional reduction is a pointwise projection of the elements of a dataset onto the Grass-
mann manifold. Next, a connected graph is created across the data on the Grassmann manifold
where a random walk is performed to embed the data into a low-dimensional Euclidean space. This
dimension reduction is illustrated in Fig. 1 and the procedure is detailed herein.

Given a set of high-dimensional data SX = {Xi, . . . ,XN}, with Xi ∈ Rn×m possessing a low-
rank structure, one can project Xi onto a Grassmann manifold via Singular Value Decomposition
(SVD) such that Xi = UiSiV

T
i , with Ui = span (Ui) ∈ G(p, n), and Vi = span (Vi) ∈ G(p,m). Next,

considering a positive semi-definite Grassmannian kernel k : G(p, .)×G(p, .)→ R (i.e. the Projection
or Binet-Cauchy kernel), we construct the kernel matrices KU = [kU,ij ] = [k(Ui,Uj)] ∈ RN×N
and KV = [kV,ij ] = [k(Vi,Vj)] ∈ RN×N . Next, we compile to composite kernel matrix as either
K = KU + KV or K = KU ◦KV where ◦ denotes the Hadamard product. We use this composite
kernel to define a random walk over the data on the manifold, denoted W = ({SU , SV}, FΘ,P),
where SU = {U1, . . . ,UN} and SV = {V1, . . . ,VN}, FΘ is the joint probability distribution of the
input parameters, and P is the transition probability matrix. The matrix P = [Pij ] is constructed
by first building the following diagonal matrix D = [Dii] ∈ RN×N as

(3.1) Dii =

N∑
j=1

kij ,
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Figure 1: Conceptual illustration of the Grassmannian diffusion maps.

such that the stationary distribution of the random walk is given by

(3.2) πi =
Dii∑N
k=1Dkk

.

Next, by normalizing the kernel kij as follows

(3.3) κij =
kij√
DiiDjj

.

the transition matrix P can be constructed as

(3.4) Pij =
κij∑N
k=1 κik

.

The eigendecomposition of P yields a set of eigenvectors Φ = [φ0, . . . , φN ] and their respective
eigenvalues Λ = {λ0, . . . , λN}. Thus, every element Xi of SX has a representation on a low-
dimensional Euclidean space defined by the points ξi = [λ0Φir, . . . , λrΦir]

T , where r < N due to
the decaying spectrum {λ0, . . . , λN}.

4. Geometric Harmonics. The construction of a mapping between the reduced (i.e., diffusion
space) and ambient (i.e., parameter space, response space) space has been discussed in the literature
by several authors [52, 12, 23, 11, 24]. In this regard, the construction of the lifting (from the reduced
space to the ambient space) and restriction (from the ambient space to the reduced space) operators
relies on the extension of empirical functions only known at specific locations of the domain, also
known as out-of-sample extension.

For example, the Nyström extension, which is very closely related to GP regression [4], is com-
monly used to construct the restriction operator within the conventional diffusion maps framework
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[52, 11]. In particular, given a new sample Xk in the dataset SX, the diffusion coordinates can be
obtained as follows

(4.1) ξi(Xk) = λ−1
k

∑
X∈SX

P (Xk,X)ξi(X),

where P (·, ·) is the transition matrix. The Nyström extension has some disadvantages such as the
computational complexity of the required diagonalization. Moreover, it can become ill-conditioned
[4], so instead we leverage a variation on the Nyström extension, known as geometric harmonics [14],
for constructing both the lifting and restriction operators.

The geometric harmonics aim to extend a function f defined on a set Ω to a set Ω such that
Ω ⊂ Ω. This extension depends on the selection of an appropriate positive semi-definite kernel k(·, ·)
(such as the Gaussian kernel in Eq. (2.9)), which defines a unique reproducing kernel Hilbert space
H of functions in Ω. Therefore, restricting k(·, ·) to Ω one can define an operator K : L2(Ω, dµ)→ H,
such that

(4.2) Kf(ω) =

∫
Ω

k(ω, ω)f(ω)dµ(ω),

where dµ is a measure with dµ < +∞, ω ∈ Ω, and ω ∈ Ω. A lemma presented by Coifman and
Lafon [14] shows that the adjoint operator K∗ : H → L2(Ω, dµ) is in fact the restriction operator.
Moreover, as this operator is self-adjoint and compact, its eigendecomposition exists and one can
write the Geometric Harmonics as

(4.3) ψi(ω) = λ−1
i

∫
Ω

k(ω, ω)ψ(ω)dµ(ω),

which can be summarized by the following expressions

(4.4) Kψi = λiψi,

and

(4.5) K∗ψi = ψi,

where L2
δ = span{ψi, i ∈ Dδ} and Hδ = span{ψi, i ∈ Dδ}, with Dδ = {i, λi ≥ δλ0} and δ > 0.

Therefore, the mechanization of the extension algorithm is given by two main steps [14]. First, f is
projected onto L2

δ = span{ψi, i ∈ Dδ}. Such that,

(4.6) f 7→ Pδf =
∑
j∈Dδ

〈f, ψj〉Ωψj .

Second, the extension Ef is given by

(4.7) Ef(ω) =
∑
j∈Dδ

〈f, ψj〉Ωψj(ω).

Details on implementation of GH can be found in Algorithm 4.1. In this algorithm, one can observe
that the sets Sx and Sy as well as S∗x and S∗y are composed of column vectors. Therefore, if the
Euclidean space of interest is the space of matrices, one can transform an element of this space
into vectors by stacking its columns. Further, one can easily observe that the restriction operator
between a point on the Grassmann manifold G(p, n) and the Grassmannian diffusion space exists
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since appropriate kernels can be defined on the Grassmann manifold, see Section 3. On the other
hand, there is no guarantee that the inverse map (lifting operator) exists due to the orthogonality
constraints of the Grassmann manifold. However, assuming that the Grassmann manifold is locally
approximated by a flat inner-product space (i.e. the tangent space TX0

G(p, n)) constructed at X0,
one can define a local lifting operator from the Grassmannian diffusion space defined on a set Ω ∈ Rk
to TX0G(p, n). It is then straightforward to apply the exponential mapping to project the extended
sampling points in TX0G(p, n) onto G(p, n) (see Section 2.1).

Algorithm 4.1 Geometric Harmonics

Require: The set Sx = {X1, . . . ,XN} ⊂ Rn represented by the matrix Sx = [X1, . . . ,XN ]
T ⊂

RN×n, the target set Sy = {Y1, . . . ,YN} ⊂ Rm represented by the matrix Sy =

[Y1, . . . ,YN ]
T ⊂ RN×m, a positive semi-definite kernel k(·, ·), and a new subset Sx∗ =

{X∗1, . . . ,X∗N} ⊂ Rn of Sx represented by the matrix Sx∗ = [X∗1, . . . ,X
∗
M ]

T ⊂ RM×n.
1: Compute the kernel matrix K = [k(Xi,Xj)].
2: Kernel eigendecomposition: Kψi = λiψi, with i = 1, . . . , r, with r ≤ N . Eigenvectors and

eigenvalues can be written as the matrices Ψ ∈ RN×r and Λ = diag(λ1, . . . , λN ) ∈ Rr×r,
respectively.

3: Compute B = ΨΛ
−1

Ψ
T
Sy ∈ RN×m.

4: Compute the kernel values for the new element: K̂ = [k(X∗i ,Xj)] ∈ RM×N .

5: Extension: Sy∗ = K̂B ∈ RM×m.
Ensure: a new set Sy∗ .

5. Grassmannian-Geometric Harmonics Maps. Consider the random vector Θ ∈ RQ
having joint probability distribution FΘ (Θ1, . . . ,ΘQ) as the input parameters to a model M(·).
One can obtain samples Θi as elements of a set SΘ = {Θ1, . . . ,ΘN} ⊂ Π from FΘ (Θ1, . . . ,ΘQ),
where Π is the parameter space. For each element of SΘ, the model M(·) (e.g., finite element
model) produces a high-dimensional response Xi ∈ Rn×m such that Xi = M(Θi). Therefore, a
set SX = {M(Θ1), . . . ,M(ΘN )} = {Xi, . . . ,XN} ⊂ Ξ is obtained, where Ξ is the response space.
With the set SX and assuming that Xi has a low-rank structure, we begin by projecting Xi onto
a Grassmann manifold. This operation is performed via singular value decomposition (SVD), as
presented in Section 2. Thus, one can decompose Xi as Xi = UiSiV

T
i , with Ui = span (Ui) ∈

G(p, n), and V = span (V) ∈ G(p,m). Moreover, a set SS = {S1, . . . ,SN} ⊂ Σ of singular values is
obtained, where Σ is the space of singular values and Si ∈ Rp×p.

Selecting an appropriate Grassmannian kernel [19], we next construct a connected graph on
the sets SU = {U1, . . . ,UN} ⊂ G(p, n) and SV = {V1, . . . ,VN} ⊂ G(p,m) and apply the procedure
of Section 3 to determine the new coordinates (Grassmannian diffusion coordinates) embedding
the data on the Grassmann manifolds G(p, n) and G(p,m) into a low-dimensional Euclidean space
(Grassmannian diffusion space). Once the Grassmannian diffusion coordinates ξ = {ξ1, . . . , ξN} ∈ ∆
are obtained, we construct a global map (surrogate) using geometric harmonics (see Section 4)
between Π and ∆ (GH0 : Π → ∆), although local maps can also be constructed if necessary. For
this mapping, the Gaussian kernel k(Θi,Θj) (Eq. 2.9) is used because we want to construct a map
between Euclidean spaces. A second map between Π and Σ (GH1 : Π → Σ) is constructed using
GH as well. With both maps constructed, we can predict the dimension reduced response of M(·)
for any new set of input parameters. In other words, considering that a new set of input parameters
Θ∗ is sampled from FΘ, we estimate the corresponding Grassmannian diffusion coordinates in ∆ by
ξ∗ = GH0(Θ∗). Simultaneously, we estimate the singular values by S∗ = GH1(Θ∗).
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Once the estimated coordinate ξ∗ in ∆ is obtained, it is necessary to expand this reduced
dimension solution from the Grassmannian diffusion manifold back to the full-dimensional solution
in the ambient space. The first step of this decoding is to define a mapping between ∆ and the
Grassmann manifolds G(p, n) and G(p,m). To achieve this, we define a series of local GH lifting
operators Λ0 : ∆→ Tµ̂uG(p, n) and Λ1 : ∆→ Tµ̂vG(p,m) where µ̂u and µ̂v are the reference points
on the Grassmann manifold where the tangent spaces are constructed. The local operators are
determined by identifying the k nearest neighbors to the point ξ∗. These points define the vicinity
of ξ∗ on the Grassmann manifold, and the tangent space can be constructed either around their
Karcher mean (see Section 2.3); or around the nearest neighbor of ξ∗ on the Grassmann manifold,
which is a computationally efficient method since no optimization is performed. These local data
are then used to construct the GH lifting operator. Using these lifting operators, we obtain the
points Γ∗u = Λ0(ξ∗) and Γ∗v = Λ1(ξ∗), where Γ∗u ∈ Rm×p and Γ∗u ∈ Rm×p represent points on
their respective tangent spaces. Next, we apply the exponential map to obtain the corresponding
points on G(p, n) and G(p,m) (see Section 2.1) as U∗ = expµ̂u(Γ∗u) and V∗ = expµ̂v (Γ∗v), where
U∗ = span (U∗) ∈ G(p, n) and V∗ = span (V∗) ∈ G(p,m). Finally, the solution X∗ for the new set
of input parameters Θ∗ can be predicted by the following matrix product

(5.1) X∗ = U∗S∗V∗T .

Next, two algorithms are presented summarizing this method. Algorithm 5.1 describes the
construction of the maps between the spaces of interest (training), and Algorithm 5.2 shows how
to predict the response using the constructed maps. Moreover, the proposed surrogate modeling
approach is illustrated conceptually in Fig. 2.

Algorithm 5.1 Grassmannian-GHMaps: training

Require: a model M(Θ); a set of N vectors of input parameters SΘ = {Θ1, . . . ,ΘN} ⊂ Π,
with Θ ⊂ RQ; and a response set SX = {M(Θ1), . . . ,M(ΘN )} = {Xi, . . . ,XN} ⊂ Ξ, with
Xi ∈ Rn×m, of M(Θi).

1: for i ∈ 1, . . . , N do
2: Compute the thin Singular Value Decomposition: Xi = UiSiV

T
i , where Ui = span(Ui) ∈

G(p, n) and Vi = span(Vi) ∈ G(p,m).
3: end for
4: Construct the sets SU = {U1, . . . ,UN} ⊂ G(p, n), SV = {V1, . . . ,VN} ⊂ G(p,m), and SS =
{S1, . . . ,SN} ⊂ Σ.

5: For every pair [Ui,Uj ] and [Vi,Vj ] compute the entries of kij of the kernel matrices kij (U) and
kij (V), either using Eq. (2.10) or Eq. (2.12) (or Eq. (2.11) or Eq. (2.13), equivalently).

6: If necessary, compute the composed kernel matrix k (U ,V). k (U ,V) = kij (U) + kij (V) or

k (U ,V) = kij (U) ◦ kij (V), where ◦ is the Hadamard product.

7: Apply the approach of Section 3 on k (U ,V) to get the Grassmannian Diffusion Coordinates
ξ = {ξ1, . . . , ξN} ∈ ∆.

8: Construct the GH map from Π to ∆, GH0 : Π→ ∆. (Algorithm 1 with (Θ, ξ) as training data.)

9: Construct the GH map from Π to Σ, GH1 : Π→ Σ. (Algorithm 1 with (Θ,S) as training data.)
Ensure: GH maps: GH0 and GH1.
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Algorithm 5.2 Grassmannian-GHMaps: prediction

Require: the GH maps GH0 and GH1 (Algorithm 5.1), and a new vector of input parameters Θ∗

to predict X∗ =M(Θ∗).
1: Estimate the diffusion coordinates ξ∗ corresponding to Θ∗: ξ∗ = GH0(Θ∗).
2: Estimate the singular values S∗ corresponding to Θ∗: S∗ = GH1(Θ∗).
3: Find the k-neighbors (indices Ik) of ξ∗ in ξ to create the subset Kξ = {ξk|k ∈ Ik}.
4: From the points with indices in Ik, find the reference points (e.g., nearest neighbor, Karcher

mean) µ̂u and µ̂v on G(p, n) and G(p,m), respectively.
5: for i ∈ Ik do
6: Map the corresponding points on G(p, n) and G(p,m) to the tangent spaces Tµ̂u and Tµ̂v ,

respectively: Γ
(U)
i = logµ̂k(Ui) and Γ

(V)
i = logµ̂k(Vi).

7: end for
8: Use Algorithm 4.1 and the set Kξ to create the local maps Λ0(·) and Λ1(·) between ∆ and Tµ̂u

and Tµ̂v in the vicinity of µ̂u and µ̂v, respectively.
9: Compute the matrices corresponding to the points on Tµ̂u and Tµ̂v : Γ∗u = Λ0(ξ∗) and Γ∗u =

Λ1(ξ∗).
10: Use the exponential map to project the points in the tangent spaces onto their respective Grass-

mann manifolds: U∗ = expµ̂u(Γ∗u) and V∗ = expµ̂v (Γ∗v), where U∗ = span (U∗) ∈ G(p, n) and
V∗ = span (V∗) ∈ G(p,m).

Ensure: predicted solution X∗ = U∗S∗V∗T .

Figure 2: Conceptual illustration of the Grassmannian diffusion maps based surrogate modeling:
sampling the parameter space and and mapping to response prediction.

6. Examples. In this section, three examples are considered to demonstrate the versatility
of the proposed surrogate modeling approach. We begin with a toy example in which structured
points on the Grassmann manifold can be easily visualized as points on the unit sphere. In the
second example, the electrical potential field of an infinitely long dielectric cylinder suspended in a
homogeneous electric field is predicted considering that the cylinder’s radius r0 and the strength of
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the electric field E∞ are random variables. The third example considers the evolution of the strain
field in an amorphous solid under simple shear using the shear transformation zone (STZ) theory of
plasticity.

The projection kernel in Eq. (2.12) is adopted in all examples presented in this section, and the
kernel composition by the Hadamard product is considered. Moreover, the accuracy of the predicted
solutions is evaluated by using the entry-wise relative error for matrices (Eq. (6.1)) and the relative
error in a L2-norm (Frobenius for matrices) sense (Eq. (6.2)).

(6.1) errorrel =

∣∣∣∣∣X∗ −Xexact

Xexact

∣∣∣∣∣.
(6.2) errorL2

=
‖X∗ −Xexact‖L2

‖Xexact‖L2

.

6.1. Structured data on the unit sphere in R3. Consider the following set of equations,

x = |r|sin(t)cos(s),

y = rsin(t)sin(s),

z = |r|cos(t);

(6.3)

such that r is uniformly distributed in the interval [−2, 2], t is uniformly distributed in the interval
[−π/2, π/2], and s = sin−1

(
cos(t)2

)
. We draw N = 3, 000 sample pairs (r, t) ∈ Π to obtain a

collection of N points constrained on two cone-like structures in R3 as presented in Fig. 3a, with
the colors representing the magnitude

√
x2 + y2 + z2. In effect, we have a model (Eq. (6.3)) that

maps two random variables onto a surface in R3.
Each point is represented by a column vector Xi = [xi, yi, zi]

T , which together compose the set
SX = {X1, . . . ,XN}. One can readily see that these points can be projected onto the Grassmann
manifold G(1, 3), which is the unit sphere S3. A point Xi on G(1, 3) is given by the unit vector
obtained from the normalization of Xi such that Xi = Xi/‖Xi‖2, which reveals two inverted teardrop
shaped structures on the sphere as illustrated in Fig. 3b. Applying diffusion maps to these points
on the Grassmann manifold, we see that a well-defined parametrization is obtained, as revealed by
the Grassmannian diffusion coordinates in Fig. 3c.

Geometric harmonics is used to create a map GH0 : Π → ∆ from the parameter space Π to
the Grassmannian diffusion manifold ∆. Therefore, it can be considered as a manifold learning
technique, where the position on the Grassmannian diffusion manifold (Fig. 3c) can be predicted
for any point Θ in the parameter space Π. To verify the accuracy of this learning process, we draw
3,000 additional samples Θ (Fig. 4). One can easily see in Fig. 4 that the trained GH can reliably
predict the shape of the Grassmannian diffusion manifold.

We obtain a new parameter vector Θ∗ = (r, t) = (1, 1.3) by sampling Π, and the GDMaps-based
surrogate model is used to predict the vector X∗. Using the map GH1 : Π→ Σ one can predict the
first two nontrivial diffusion coordinates as ξ∗ = [−1.3657×10−2,−6.5931×10−3], represented by the
red star in Fig. 5a. Moreover, we observe that S∗ = r = 1 determines the magnitude of the predicted
point in R3. Selecting the k = 3 nearest neighbors of ξ∗ in Algorithm 5.2, we predict the point in the
ambient space (i.e. on the cone structure) corresponding to Θ∗ by mapping ξ∗ onto the tangent space
T , constructed in the closest neighbor of ξ∗ (one can also use the Karcher mean alternatively), for
posterior projection onto the Grassmann manifold G(1, 3), as illustrated by the red star in Figure 5b.
This point coincides very closely with with true point denoted by the black dot. From the the point
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Figure 3: Example 1: Collection of N = 3, 000 random points constrained by Eqs. (29) (a) in the
ambient space R3, (b) in G(1, 3) or S3, (c) in Grassmannian diffusion coordinates. In (a) points are

colored by Euclidean distance from the origin. In (b), (c) points are colored by the first
Grassmannian diffusion coordinate.

−0.01 0.01ψ1

−0.008

0.008

ψ2

(a)

−0.01 0.01ψ1

−0.008

0.008

ψ2

(b)

Figure 4: Example 1: Grassmannian diffusion manifold: a) training set for GH, and b) predicted
Grassmannian diffusion manifold for 3,000 additional samples.

projected onto the Grassmann manifold and considering the magnitude of the magnitude of the point
given by |r|, we predict the point X∗ = [0.96117, 0.06895, 0.2675]T represented by the red star in the
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Figure 5: Example 1: Grassmannian diffusion coordinates with the predicted point in the
Grassmannian diffusion space.

ambient space in Fig. 5c, where again the black dot is the true value Xexact = [0.9611, 0.0689, 0.2675].
In this case, we obtain errorrel = [8.5947×10−5, 8.3515×10−3, 5.6326×10−4] and errorL2

= 6×10−4.
Next, we draw N = 10, 000 pairs (r, t) ∈ Π to assess the overall performance of the proposed

surrogate modeling technique. Using this new set of input parameters we predict N points on
the cone-like structure and compare them with the exact points corresponding to the set of input
parameters. Figure 6 shows the predicted cone-like structures from these 10,000 surrogate model
evaluations. Comparing with Figure 3, we can see that the points closely match the true structure.

To assess the overall quality of the predictions, the marginal probability density functions (PDF)
for each dimension (x, y, z) are estimated using the kernel density estimation (KDE) and shown in
Fig. 7 for both the true samples and the surrogate predictions. The PDFs for the surrogate
predictions match those of the true samples very closely.

6.2. Dielectric cylinder in homogeneous electric field. In this example, we study vari-
ations in the electrical potential of an infinitely long dielectric cylinder suspended in a homo-
geneous electric field, resulting from uncertainty in the input parameters. The problem is de-
fined over a rectangular domain Ω = [−1, 1] × [−1, 1] with the embedded cylinder domain Dc ={

x = (x, y) |
√
x2 + y2 ≤ r0

}
, where r0 is the cylinder’s radius. We assume Dirichlet boundary con-

ditions, ΓD, on the left and right boundaries and Neumann boundary conditions ΓN on the top and
bottom boundaries.

The electric potential u(x) in Ω can be computed by solving the Laplace equation

−∇ · (ε (x)∇u (x)) = 0, x ∈ Ω,(6.4a)

u (x) = u∗ (x) , x ∈ ΓD,(6.4b)

(∇u (x)) · n = (∇u∗ (x)) · n, x ∈ ΓN,(6.4c)

where n denotes the outer normal unit vector. The permittivity ε (x) is given by

ε(x) =

{
εc, x ∈ Dc,

εo, x ∈ Ω \Dc,
(6.5)
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Figure 6: Example 1: Predicted points on the cone-like structure in the ambient space using the
surrogate model. Color scale indicates Euclidean distance from the origin.
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Figure 7: Example 1: Probability density functions for dimensions (a) x, (b) y, and (c) z.

and u∗, which is also the analytical solution to the problem, is given by

u∗ (x) = −E∞x
{

1− εc/εo−1
εc/εo+1

r20
x2+y2 , x ∈ Ω \Dc,

2
εc/εo+1 , x ∈ Dc.

(6.6)
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where E∞ is the strength of the homogeneous electric field. We consider as random variables
the cylinder’s radius r0, and the strength of the electric field E∞. These variables are uniformly
distributed as defined in Table 1.

Table 1: Details of the state variables and input parameters of the dielectric cylinder suspended in
homogeneous electric field.

Description of variables/parameters Uncertainty/value

Cylinder radius r0 ∼ U(0.20, 0.70)

Strength of electric field E∞ ∼ U(8, 18)

Relative permittivity of cylinder’s material εc 3

Relative permittivity of surrounding space εo 1

*All sizes are expressed in SI units.

The GDMaps based surrogate model presented in this paper is composed of three distinct maps
based on geometric harmonics: (1) A global map between the parameter space and the Grassmannian
diffusion manifold (GH0 : Π→ ∆); (2) a global map between the parameter space and the singular
values space (GH1 : Π→ Σ); and (3) a local map between the Grassmannian diffusion manifold and
the tangent space of a region of the Grassmann manifold Λ : ∆→ T . Moreover, an additional map is
built for the projection of the points in the tangent space onto the Grassmann manifold. Considering
this sequence of mappings, one can expect that errors can propagate within the framework pipeline,
negatively affecting the response prediction. Therefore, the identification of the source of errors is
relevant for increasing the accuracy of the predicted outcomes. Therefore, the model presented in
this example is used to demonstrate how the errors can be reduced by an appropriate selection of
parameters for the construction of maps based on GH.

For the error analysis presented in this section, let’s assume a training set of input parameters
Θ = (r0, E∞) of N = 300 samples and the corresponding electrical potential fields X = M(Θ) ∈
Rm×n over the domain Ω discretized into (n × m) = (300 × 300) = 90, 000 mesh points. In this
example, the Grassmann manifolds G(p, n) = G(74, 300) and G(p,m) = G(74, 300) are sufficient to
encode the geometric structure of the electrical potential fields X. Using Algorithm 5.1, we obtain
points on the Grassmannian diffusion manifold; and according to the parsimonious representation
of the diffusion maps [20], only the first non-trivial diffusion coordinate is relevant to encode the
geometrical information of the underlying physical phenomenon. Therefore, a dimension reduction
from n×m = 90, 000 to r = 1 is achieved using Grassmannian diffusion maps.

To assess the ability of the global map GH0 : Π → ∆ to learn the relationship between points
in the parameter space and the structure of the data on the Grassmannian diffusion manifold (∆),
we start by sampling 1,000 additional points from Π to be mapped in ∆ using GH0. In Fig. 8,
which shows both training data and predicted points in the Grassmannian diffusion coordinates, we
see that GH0 has adequately learned the shape of the data on the Grassmannian diffusion manifold
using Gaussian kernel with length-scale equal to εG = 1, and retaining q = 50 eigenvalues in the GH
framework. However, these parameter, together with the number of samples in the training set, can
influence the accuracy of the geometric harmonics maps. Next, the influence of (εG) and q on the
accuracy of both GH0 : Π→ ∆ and GH1 : Π→ Σ is analyzed.

We start by plotting the decay of the eigenvalues for GH0 for different values of εG. It is
clear from Fig. 9 that as εG increases, the eigenvalues tends to decay quicker. This behavior will
have a strong influence on the prediction error of GH0 and GH1 because the construction of the
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Figure 8: Example 2: the first Grassmannian diffusion coordinate ξ1, and the predicted
coordinates of 1,000 additional samples, as a function of a) r0 and b) E.

matrix B in Algorithm 4.1 depends on the reciprocal of the corresponding eigenvalues. Therefore,
if a larger number of very small eigenvalues are retained, their reciprocal could lead to large errors
and numerical instabilities. Thus, the selection of εG is inherently connected with the number of
eigenvalues one should retain for the construction of B. This analysis is presented in Fig. 10a for
GH0, and in Fig. 10b for GH1 where we show the average error in the GH predictions for different
combinations of εG and q. In both cases, we see that for large values of εG, a smaller number of
eigenvectors and their respective eigenvalues should be retained in the construction of the matrix
B, which has a direct influence in its rank. Selecting a larger εG along with a high q will introduce
large errors.

Next, the influence of the size of the training set N is investigated. In this regard, the initial
300 samples and their respective diffusion coordinates are split into a training and a testing set
to which the predicted Grassmannian diffusion coordinates can be compared. Considering Ntrain
varying from 20 to 200, and keeping εG = 1 and q = 50 constants, the average error in the L2-norm
sense as a function of Ntrain is presented in Fig. 11a, for GH0, and in Fig. 11b, for GH1. In both
cases the error reduces, although at a limited rate, after a certain value of N due to the fact that a
residual error remains due to the selected values for εG and q.

Next, we investigate the accuracy of the local maps, Λ0(·) and Λ1(·), between ∆ (Grassmannian
diffusion space) and the tangent spaces Tµ̂u and Tµ̂v , respectively. The exact diffusion coordinates
for each of the 300 training points are used, and the prediction of the corresponding points on the
tangent spaces are obtained using the local maps with different numbers of neighbors (k) used to
construct the local geometric harmonics maps. The probability density functions (PDFs) for the
errorL2

are estimated using kernel density estimation for k =3, 5, and 10 (closest neighbors points)
in Figure 12a. We clearly see that the errors induced by these local maps are minimal and that
they are not strongly influenced by k in this specific problem, because a point is predicted in a
region close to the reference point where the tangent space is constructed on. Note also that the
length-scale parameter for the local maps is taken to be 0.25 times the square value of the median
of the pairwise distances of the k neighbors.

The cumulative error associated with the full process is analyzed by drawing 1,000 sample
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Figure 9: Example 2: Decay of the eigenvalues for the geometric harmonics surrogate GH0

considering different length-scale parameters εG in the Gaussian kernel.
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Figure 10: Example 2: Average error from 100 test samples for different combinations of the
number of eigenvalues retained in the construction of the geometric harmonics (q) and the value to

the length-scale parameter (εG) for (a) surrogate GH0, and (b) surrogate (GH1).

points from the parameter space and computing posterior error estimation (errorL2) of the predicted
response. The estimated PDF of the error is shown in Fig. 12b, where the mean is equal to
1.8489 × 10−3 and the standard deviation is equal to 2.7598 × 10−3. This reveals that the overall
errors in the prediction solutions are very small compared to their true solutions, even considering
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Figure 11: Example 2: Average error from surrogates GH0 (a) and GH1 (b) for increasing size of
the training data set..
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Figure 12: Example 2: PDFs of the errors for: a) local maps for different k (300 samples), b)
overall response prediction using all maps from 1,000 additional samples.

Finally, for illustration we consider three test points Θ∗a = (r0, E∞) = (0.25, 17), Θ∗b =
(r0, E∞) = (0.40, 10) and Θ∗c = (r0, E∞) = (0.65, 15). The exact electrical potential fields are
obtained by numerically solving the model in Eq. 6.4 (Figs. 13a,d,g) on a 300×300 meshed domain.
The predict electric fields (Figs. 13b,e,h) are obtained using the surrogate model developed herein.
The exact and predicted solutions are compared by errorrel in Figs. 13c,f,i, where the corresponding
error in the L2-norm sense (errorL2) are 5.4862 × 10−4, 4.3704 × 10−4, and 1.8306 × 10−3 for Θ∗a,
Θ∗b , and Θ∗c , respectively. We can see that our surrogate model, which reduces the dimension of the
solution from 90,000 spatial points to a single Grassmannian diffusion coordinate is very accurate.
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Figure 13: Example 2: Left – Exact electric potential for a) Θ∗a, d) Θ∗b , and g) Θ∗c . Center –
Predicted electric potential for b) Θ∗a, e) Θ∗b , and h) Θ∗c . Right – Relative errors for c) Θ∗a, f) Θ∗b ,

and i) Θ∗c

6.3. Continuum modeling of plasticity in an amorphous solid. An important theoretical
hypothesis about the behavior of amorphous solids (e.g., metallic glasses) says that irreversible
plastic deformation is mediated through atomic rearrangements in small clusters of atoms known
as shear transformation zones (STZs) [25]. Consequently, amorphous materials subject to large
shear stresses are often prone to the formation of shear bands due to the rearrangements of STZs in
localized regions. It has been proposed that one can connect these large-scale plastic deformations
to an effective temperature [6]

(6.7) Teff =
∂Uc
∂Sc

where Uc and Sc are the potential energy and entropy of the configurational degrees of freedom
under the assumption that both the total energy U and total entropy S are separated into kinetic
and configurational components, i.e. U = Uc + Uk and S = Sc + Sk, respectively. This effective
temperature provides a measure of the degree of structural disorder (characterizing the density of
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STZs) and can be dedimensionalized as

(6.8) χ =
kBTeff
Ez

where kB = 1.38× 10−23 is the Boltzman factor, Ez is the STZ formation energy.
Given a spatially varying initial effective temperature field χ on a material domain, the STZ

theory defines two coupled equations to model the evolution of plastic strain in the material. The
first describes a plastic flow rule that relates the plastic rate of deformation tensor Dpl to the effective
temperature as:

(6.9) Dpl =
1

τ0
exp

{
−
(

ez
kBχ

+
∆?

kBT

)}
cosh

(
Ωε0σ

kBT

)(
1− σy

σ

)
Note that this flow rule is monotonic with respect to σ/σy, with σ = |σ0| given as the magnitude of
the deviatoric shear stress σ0 = σ = 1

31Tr(σ). Therefore, plastic deformation does not occur when
σ/σy < 1.

The second equation describes the evolution of χ as

(6.10) c0χ̇ =
1

σy

(
Dpl : σ0

)
(χ∞ − χ) +∇ ·Dχ∇χ

where Dχ = l2
√

Dpl : Dpl. Other parameters are defined in Table 2.

Table 2: Parameters for the STZ plasticity model for a bulk metallic glass material.

Parameter Unit Value Description

σy GPa 0.7 Yield stress
τ0 s 10−13 Molecular vibration timescale
ε0 - 0.333 Typical local strain at STZ transition

∆?/kB K 7948 Typical activation temperature

Ω/kB Å
3

349 Typical activation volume
T K 97 Bath temperature
χ∞ K 1050.6 Steady-state effective temperature
ez/kB K 21000 STZ formation energy
c0 - 0.414 Plastic work fraction
lχ Å 10 Diffusion length scale

In this example, a numerical scheme developed by Rycroft et al.[57, 51] is used to solve the
system of Eqs. (6.9-6.10) . This method utilizes an Eulerian finite-difference method under quasi-
static conditions. As mentioned previously, the STZ theory assumes that the effective temperature
has a spatial distribution that influences the material response. Therefore, the evolution of Eqs. (6.9-
6.10) depends on the initial χ field. This field is assumed to be Gaussian [36, 30, 41], therefore it
can be characterized by the mean µχ and coefficient of variation cχ. Herein, it is assumed that these
parameters are both uncertain with uniform distributions as described in Table 3. The associated
correlation structure and length-scale are inferred from molecular dynamics simulations [36, 40]. In
the simulations, a simple shear up to 50% strain is imposed to a simulation box of size 400Å× 400Å.
A grid of size 32 × 32 is considered in the discretization, where each element has a size of 12.5Å×
12.5Å. Therefore, each snapshot of this simulation is given by a matrix Xi ∈ R32×32.
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Table 3: Probability distributions of the STZ random field parameters.

Description of variables/parameters Uncertainty/value

Mean µX ∼ U(500, 700)

Coefficient of variation cX ∼ U(0, 0.1)

We obtain N = 196 samples of the pair Θ = (µχ, cχ) via stratified sampling to train a surrogate
model for full evolution of the plastic strain field. The evolution of the plastic strain field for a given
pair Θ = (µχ, cχ) is presented in Fig. 14 as a sequence of 101 snapshots of size Lx and Ly at discrete
values of the imposed shear strain ε̄. A matrix Y ∈ R1024×101 is then constructed for a given pair
Θ = (µχ, cχ), where each column of Y correspond to the vectorized snapshot of the plastic strain
field.

Figure 14: Evolution of plastic strain with a snapshot of the strain field at a given strain level
extracted.

In this problem, two Grassmann manifolds given by G(p, n) (left manifold) and G(p,m) (right
manifold) are associated with the left and right singular vectors of the matrices Y ; where n = 1024,
m = 101, and p = 10 suffices to encode the geometric structure of each data point. Using GDMaps,
we obtain a set of 196 Grassmannian diffusion coordinates embedding the high-dimensional data
into a low-dimensional Euclidean space as shown in Fig. 15 with r = 3.

Once the surrogate model is trained using the 196 samples obtained previously, we can pre-
dict the full evolution of the plastic strain field for any pair Θ = (µχ, cχ). Considering a rep-
resentative case with Θ = (530.1748, 0.0792), the simulated and predicted evolution of the plas-
tic strain field, as well as their relative error, are presented in Fig. 16 for five different levels
of imposed strain (0%, 12.5%, 25%, 37.5%, 50%). The error in the L2-norm sense for this plastic
strain field is equal to 2.0473 × 10−3. Next, considering 100 additional samples we compute the
mean and standard deviation of the plastic strain fields at the different levels of imposed strain
(25%, 30%, 35%, 40%, 45%, 50%) as presented in Figs. 17, and 18. These figures include the statisti-
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Figure 15: Grassmannian diffusion coordinates.

cal characterization obtained by using the numerical model and the surrogate model, along with the
relative errors. From these results, we see that the surrogate model developed herein can predict the
uncertain response of a complex model with high-accuracy, by taking advantage of low-dimensional
subspace structure of the problem to reduce the computational burden associated with running
high-fidelity models for UQ.
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Figure 16: Exact and simulated strain field evolution for (µχ, cχ) = (530.1748, 0.079) and the
corresponding errors.
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Figure 17: Simulated and predicted evolution of the mean of the strain field for 100 additional
samples and the corresponding errors.
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Figure 18: Simulated and predicted evolution of the standard deviation of the strain field for 100
additional samples and the corresponding errors.

7. Conclusions. This paper introduces a fully data-driven surrogate model for uncertainty
quantification of high-dimensional models of complex physical/engineering systems. It takes ad-
vantage of the low-dimensional representation of high-dimensional input/output data obtained via
Grassmannian diffusion maps to create a set of geometric harmonics based maps. A global map is
constructed to predict the Grassmannian diffusion coordinates corresponding to any new element
in the set of input parameters with good accuracy. Once the Grassmannian diffusion coordinates
corresponding to a new set of input parameters are predicted, the k-nearest neighbors points in the
Grassmannian diffusion space and their associated points on the Grassmann manifold are utilized to
estimate, via geometric harmonics, a local map from the Grassmannian diffusion space to a tangent
space. Next, the exponential map project the point onto the Grassmann manifold, a result used to
predict the high-fidelity solution of the problem.

The method developed herein used the descriptive power of the Grassmannian diffusion maps
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and the computational performance of geometric harmonics to provide an efficient and accurate
prediction of the solution of complex systems described by algebraic equations and partial/ordinary
differential equations. Three examples were considered to evaluate the performance of this technique.
The first one consisted of a toy example to demonstrate the ability of the technique to predict data
with complex geometry using spectral methods in a way that is easy to understand and visualize.
In the second example, the performance of the surrogate modeling developed herein was verified
in a physical model (i.e., electric potential of a cylinder in homogeneous electric field) with high-
dimensional response, also considering discontinuities in the system response. It was demonstrated
that some parameters such as the length-scale parameter and the number of retained eigenvalues,
both for the Gaussian kernel used in the geometric harmonics framework; as well as the amount of
data in the training set, are important quantities affecting the accuracy of the presented technique.
The third problem analyzed in this paper evaluated the plastic deformation of amorphous solids
using the shear transformation zone (STZ) theory of plasticity. The uncertainty was imposed in the
mean and coefficient of variation of the initial nondimensionalized effective temperature field (χ).
In this case, the evolution of the strain field with the strain level is also taken into consideration,
and the uncertainties of the plastic strain field are predicted accurately.

In all the cases considered herein, a good accuracy was identified in the predicted solutions
in comparison with the exact ones. The method proves advantageous due to its computational
performance and ability to make reliable predictions for high-dimensional responses considering a
highly sparse set of points.

Acknowledgments. This material is based upon work supported by the U.S. Department of
Energy, Office of Science, Office of Advanced Scientific Computing Research under Award Number
DE-SC0020428.

Financial disclosure. None reported.

Conflict of interest. The authors declare no potential conflict of interests.

REFERENCES

[1] D. Amsallem and C. Farhat, Interpolation method for adapting reduced-order models and application to
aeroelasticity, AIAA Journal, 46 (2008), pp. 1803–1813.

[2] L. Auslander and R. MacKenzie, Introduction to Differentiable Manifolds, Dover Books on Mathematics,
Dover Publications, 2012.
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[45] O. P. Le Mâıtre and O. M. Knio, Non-intrusive Methods, Springer Netherlands, Dordrecht, 2010, pp. 45–72.
[46] W. Leeb, Properties of laplacian pyramids for extension and denoising, 2019. arXiv:1909.07974.
[47] L.-H. Lim, K. Sze-Wai Wong, and K. Ye, Numerical algorithms on the affine grassmannian, SIAM Journal

on Matrix Analysis and Applications, 40 (2019), pp. 371–393, https://doi.org/10.1137/18M1169321.
[48] Z. Majdisova and V. Skala, Radial basis function approximations: comparison and applications, Applied

Mathematical Modelling, 51 (2017), pp. 728–743, https://doi.org/https://doi.org/10.1016/j.apm.2017.07.
033, https://www.sciencedirect.com/science/article/pii/S0307904X17304717.

[49] M. D. McKay, R. J. Beckman, and W. J. Conover, A comparison of three methods for selecting values of
input variables in the analysis of output from a computer code, Technometrics, 21 (1979), pp. 239–245,
http://www.jstor.org/stable/1268522.

[50] J. Miao and A. Ben-Israel, On principal angles between subspaces in rn, Linear Algebra and its Applications,
171 (1992), pp. 81 – 98.

[51] C. H. R. N. M. Boffi, Parallel three-dimensional simulations of quasi-static elastoplastic solids, Computer
Physics Communications, 70 (2020), p. 107254.

[52] B. Nadler, S. Lafon, R. R. Coifman, and I. G. Kevrekidis, Diffusion maps, spectral clustering and
reaction coordinates of dynamical systems, Applied and Computational Harmonic Analysis, 21 (2006),
pp. 113–127, https://doi.org/https://doi.org/10.1016/j.acha.2005.07.004, https://www.sciencedirect.com/
science/article/pii/S1063520306000534. Special Issue: Diffusion Maps and Wavelets.

[53] A. Olivier, D. Giovanis, B. Aakash, M. Chauhan, L. Vandanapu, and M. Shields, Uqpy: A general purpose
python package and development environment for uncertainty quantification, Journal of Computational
Science, (2020), p. 101204.

[54] L. Rangarajan and P. Nagabhushan, Linear regression for dimensionality reduction and classification of
multi dimensional data, in Pattern Recognition and Machine Intelligence, S. K. Pal, S. Bandyopadhyay,
and S. Biswas, eds., Berlin, Heidelberg, 2005, Springer Berlin Heidelberg, pp. 193–199.

[55] C. E. Rasmussen, Gaussian Processes in Machine Learning, Springer Berlin Heidelberg, Berlin, Heidelberg,
2004, pp. 63–71.

[56] S. T. Roweis and L. K. Saul, Nonlinear dimensionality reduction by locally linear embedding, Science,
290 (2000), pp. 2323–2326, https://doi.org/10.1126/science.290.5500.2323, https://science.sciencemag.org/
content/290/5500/2323, https://arxiv.org/abs/https://science.sciencemag.org/content/290/5500/2323.full.
pdf.

https://doi.org/10.1109/ICASSP.2018.8462408
https://doi.org/10.1103/PhysRevE.95.053001
https://doi.org/10.1103/PhysRevE.95.053001
https://link.aps.org/doi/10.1103/PhysRevE.95.053001
https://doi.org/https://doi.org/10.1002/nme.6236
https://doi.org/https://doi.org/10.1016/j.cma.2020.113568
https://doi.org/https://doi.org/10.1016/j.cma.2020.113568
https://doi.org/https://doi.org/10.1002/cpa.3160300502
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.3160300502
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpa.3160300502
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpa.3160300502
https://doi.org/https://doi.org/10.1016/j.probengmech.2016.08.002
https://doi.org/https://doi.org/10.1016/j.probengmech.2016.08.002
https://www.sciencedirect.com/science/article/pii/S0266892016300960
https://doi.org/10.10520/AJA0038223X_4792
https://doi.org/10.10520/AJA0038223X_4792
https://doi.org/10.1137/18M1169321
https://doi.org/https://doi.org/10.1016/j.apm.2017.07.033
https://doi.org/https://doi.org/10.1016/j.apm.2017.07.033
https://www.sciencedirect.com/science/article/pii/S0307904X17304717
http://www.jstor.org/stable/1268522
https://doi.org/https://doi.org/10.1016/j.acha.2005.07.004
https://www.sciencedirect.com/science/article/pii/S1063520306000534
https://www.sciencedirect.com/science/article/pii/S1063520306000534
https://doi.org/10.1126/science.290.5500.2323
https://science.sciencemag.org/content/290/5500/2323
https://science.sciencemag.org/content/290/5500/2323
https://arxiv.org/abs/https://science.sciencemag.org/content/290/5500/2323.full.pdf
https://arxiv.org/abs/https://science.sciencemag.org/content/290/5500/2323.full.pdf


GRASSMANNIAN DIFFUSION MAPS 27

[57] C. H. Rycroft, Y. Sui, and E. Bouchbinder, An eulerian projection method for quasi-static elasto-plasticity,
Computational Physics, 30 (2008), pp. 1–14.

[58] M. D. Shields, Adaptive monte carlo analysis for strongly nonlinear stochastic systems, Reliability Engineering
& System Safety, 175 (2018), pp. 207–224, https://doi.org/https://doi.org/10.1016/j.ress.2018.03.018, https:
//www.sciencedirect.com/science/article/pii/S0951832017308827.

[59] M. D. Shields, K. Teferra, A. Hapij, and R. P. Daddazio, Refined stratified sampling for efficient monte
carlo based uncertainty quantification, Reliability Engineering & System Safety, 142 (2015), pp. 310–325,
https://doi.org/https://doi.org/10.1016/j.ress.2015.05.023, https://www.sciencedirect.com/science/article/
pii/S0951832015001726.

[60] R. Smith, Uncertainty Quantification: Theory, Implementation, and Applications, Computational Science and
Engineering, SIAM, 2013.

[61] C. Soize and R. Ghanem, Data-driven probability concentration and sampling on manifold, Journal of Com-
putational Physics, 321 (2016), pp. 242–258, https://doi.org/https://doi.org/10.1016/j.jcp.2016.05.044.

[62] G. Strang, Introduction to Linear Algebra, Wellesley-Cambridge Press, 2016.
[63] J. B. Tenenbaum, V. d. Silva, and J. C. Langford, A global geometric framework for nonlinear dimen-

sionality reduction, Science, 290 (2000), pp. 2319–2323, https://doi.org/10.1126/science.290.5500.2319,
https://science.sciencemag.org/content/290/5500/2319, https://arxiv.org/abs/https://science.sciencemag.
org/content/290/5500/2319.full.pdf.

[64] N. Wiener, The homogeneous chaos, American Journal of Mathematics, 60 (1938), p. 897–936.
[65] C. Williams and M. Seeger, Using the nyström method to speed up kernel machines, Neural Information

Processing Systems, 13 (2001), pp. 682–688.
[66] Y.-C. Wong, Differential geometry of grassmann manifolds, in Proceedings of the National Academy of Sciences

of the United States of America, 1967, p. 589–594.
[67] D. Xiu and G. E. Karniadakis, Modeling uncertainty in flow simulations via generalized polynomial chaos,

Journal of Computational Physics, 187 (2003), pp. 137–167, https://doi.org/https://doi.org/10.1016/
S0021-9991(03)00092-5, https://www.sciencedirect.com/science/article/pii/S0021999103000925.

[68] K. Ye and L.-H. Lim, Schubert varieties and distances between subspaces of different dimensions, 2014.
arXiv:1407.0900.

[69] K. Ye, K. S.-W. Wong, and L.-H. Lim, Optimization on flag manifolds, 2019. arXiv:1907.00949.

https://doi.org/https://doi.org/10.1016/j.ress.2018.03.018
https://www.sciencedirect.com/science/article/pii/S0951832017308827
https://www.sciencedirect.com/science/article/pii/S0951832017308827
https://doi.org/https://doi.org/10.1016/j.ress.2015.05.023
https://www.sciencedirect.com/science/article/pii/S0951832015001726
https://www.sciencedirect.com/science/article/pii/S0951832015001726
https://doi.org/https://doi.org/10.1016/j.jcp.2016.05.044
https://doi.org/10.1126/science.290.5500.2319
https://science.sciencemag.org/content/290/5500/2319
https://arxiv.org/abs/https://science.sciencemag.org/content/290/5500/2319.full.pdf
https://arxiv.org/abs/https://science.sciencemag.org/content/290/5500/2319.full.pdf
https://doi.org/https://doi.org/10.1016/S0021-9991(03)00092-5
https://doi.org/https://doi.org/10.1016/S0021-9991(03)00092-5
https://www.sciencedirect.com/science/article/pii/S0021999103000925

	1 Introduction
	2 Grassmann manifold
	2.1 Tangent Space: Exponential and logarithmic maps
	2.2 Grassmannian distance
	2.3 Karcher mean
	2.4 Grassmannian kernels

	3 Grassmannian diffusion maps
	4 Geometric Harmonics
	5 Grassmannian-Geometric Harmonics Maps
	6 Examples
	6.1 Structured data on the unit sphere in R3
	6.2 Dielectric cylinder in homogeneous electric field
	6.3 Continuum modeling of plasticity in an amorphous solid

	7 Conclusions
	References

